

International Journal of Research and Applications

ISSN (online): 2349-0020 ISSN (print): 2394-4544

http://www.ijraonline.com/

Research Article

Phosphonium Ionic liquid catalyzed Decarboxylation of an assortment of substituted Coumarin-4-aceticacid

Jagadeesh Kumar Ega 1* and Kavitha Siddoju 2

- ¹² Department of Chemistry, Chaitanya Deemed to be University, Telangana State, India 506 001
- ¹ jkjagadeeshkumare@gmail.com, ² kavithavbr@gmail.com

ARTICLE INFO

Corresponding Author:

jkjagadeeshkumare@gmail.com

DOI:

http://dx.doi.org/ 10.17812/IJRA.7.25(1)2020

Manuscript:

Received: 19th Jan, 2020 Accepted: 13th Feb, 2020 Published: 10th Mar, 2020

Publisher:

Global Science Publishing Group, USA http://www.globalsciencepg.org/

ABSTRACT

Ionic liquids are good catalysts in various green organic modifications. Coumarins pharmaceutically are medicinally significant Herewith potent. decarboxylation of substituted coumarin-4carboxylicacids 1a-h into 4-methyl substituted coumarin derivatives 2a-h using [PhosIL-Cl] catalyst with recyclables herewith reported. This method is environmentally benign, under mild conditions, simple workup protocols to afford excellent yields when we compared to conventional method. The products 2a-h were reported in Scheme-1 and Table-1&2 and confirmed by measuring melting points and 1H and 13C NMR spectra under deuterated chloroform as the NMR solvent. Mass of the synthesized coumarin derivatives are recorded as ESI-MS.

Keywords: Coumarin-4-carboxylic acid, phosphonium ionic liquid, decarboxylation.

1. INTRODUCTION

Coumarins are among the key classes of compounds which occur naturally, and interest in their chemistry continues unabated attributable for their functionality as biologically active agents [1]. The core structural unit of several pharmaceutical agents. A number of coumarin derivatives have been isolated from natural sources and their pharmacological and

biochemical properties depend upon the archetype of substitutions [2]. Substitutions can occur at any of the six available sites of their basic molecular moiety of coumarin, hence these compounds are tremendously variable in structure and activity. Nitrogen and oxygen containing heterocycles are perhaps by far the most explored heterocyclic compounds because of their occurrence in a myriad of natural

products and biologically active compounds. For this reason, synthetic chemists continue to be interested in the construction and functionalization of these heterocycles [3].

This structural diversity leads in coumarins exuding different biological properties that promote human health and help minimize disease risk. In the class of coumarins, 4methylcoumarins have enjoyed a special status as they form the core of industrially important coumarins like 7-hydroxy-4- methylcoumarin [4]. Because of the utmost significance of this heterocyclic system and their diverse pharmacological properties, many strategies for the synthesis of substituted coumarins have been developed [5]. There are several other important groups of ring containing hetero atom with medicinal uses. coumarin ring carrying various constituents[6]. Classical routes to coumarins incorporate Pechmann, Knoevenagel, Perkin, Reformatsky and Wittig condensation reactions [7]. Most of these methods suffer from expensive catalyst, harsh reaction conditions, multi-step synthesis or low chemical yield. However, due to simple and relatively inexpensive starting materials, the Pechmann reaction was widely used for the synthesis of coumarins.

The synthesis of 4-methylcoumarin has been mainly reported via the Pechmann condensation using diverse catalyst like H2SO4-microwave [8], montmorillonite clay [9] and PPA [10]. In the present study we describe a protocol to synthesize 4-methyl-coumarin derivatives from substituted coumarin 4-acetic acid decarboxylation. Herein coumarin 4-acetic acid is converted to 4-methyl-coumarins through decarboxylation in presence of DMF as solvent under reflux. The reactions were successfully by both conventional and microwave irradiation method. Subhash et .al. [11] reported the synthesis of 4-methyl coumarin, wherein ethyl acetoacetate was charged in toluene, later 2 equiv of zinc was added. Then substituted phenol was added followed by the addition of iodine.

Maria et.al [12] reported the synthesis of 4-methyl coumarin. Pedireddi et. al. [13] reported the synthesis of 4-methyl coumarins. when substituted cinnamate esters is reacted with substituted phenols in presence of FeCl3 in DCE solvent under stirring for 6hrs afforded 4-methyl coumarin derivatives. Vijayakumar et. al. [14] reported the synthesis of 4-methyl coumarins by using catalyst as PWA/mont-K10. Ionic liquids play a promising role for the quick synthesis of desired products with excellent yields [15].

Herewith describe the decarboxylation diverse coumarin-4- carboxylic acid into 4-methyl coumarin derivatives by ionic liquids to give promising yields.

Scheme-1 Decarboxylation of substituted coumarin-4-carboxylic acid to 4-Methyl coumarins by PIL's.

Fig. (1). Representation of tetradecyl-(trihexyl)-phosphonium chloride ionic liquid [PhosIL-Cl]

2. MATERIALS AND METHODS

To the 1 mmol of various coumarin 4-acetic acid is stirred with 2ml of [PhosIL-Cl] ionic liquid to afforded 4-methyl coumarin derivatives 2a-h under 75-80oC with promising yields (80-92%). The synthesis of the target compounds were described (shown Scheme-1, fig 1 and Table-1) with catalytic recyclables. (Table-2) The desired products are recovered by vacuum filtration. The products can be analyzed by melting point and characterized by IR, 1H, 13CNMR and ESI-MS spectra.

3. RESULTS AND DISCUSSION

Table1. Decarboxylation of various coumarin-4-carboxylicacids using Phosphonium Ionic Liquid^a

Entry	Time	Yield	M.P.(°C)
	(min)	(%)b	
2a	30	86	179-180
2b	25	90	120-121
2c	25	80	182-183
2d	35	85	147-148
2e	30	82	120-121
2f	25	92	181-182
2g	30	80	158-159
2h	25	85	145-146

- a. Reaction Condition: Coumarin-4-carboxylic acid (1 mmol), in [PhosIL-Cl]
 2ml was stirred at 75°C temperatures.
- b. Isolated and unoptimized yield.

Table 2. Recyclables of the Phosphonium Ionic Liquid

Entry	Yield (%) of [PhosIL-Cl]				
	Recycle1	Recycle2	Recycle3		
2a	90	86	80		
2b	88	85	78		
2c	92	88	80		

Spectral and Analytical data of synthesized various chalcones (2a-h)

4,5,7-trimethyl-2H-chromen-2-one(2a): light yellow solid; IR (KBr) (vmax/cm⁻¹): 1713 (C=O); ¹H NMR (400 MHz, CDCl₃,δ ppm) δ2.36(s,3H, -CH₃), 2.58(s, 3H, - CH₃), 2.66 (s, 3H, CH₃), 6.14 (s, 1H, Ar-H), 6.87 (s, 1H, Ar-H), 6.99 (s, 1H, Ar-H); ¹³C NMR (100 MHz ,CDCl₃, δ ppm): 21.09, 24.19,25.03, 115.40, 116.10, 116.76, 129.50, 136.36, 141.78, 154.19, 155.15, 160.65;ESI-MS: 188 [M]+; Anal. calcd for C₁₂H₁₂O₂: C, 76.57; H, 6.43; Found: C, 76.51; H, 6.47%.

4,6-dimethyl-2H-chromen-2-one(2b): light yellow solid; IR (KBr) (vmax/cm⁻¹): 1717 (C=O); ¹H NMR (400 MHz, CDCl₃) δ 2.05 (s, 3H, CH₃), 2.35 (s, 3H, CH₃), 6.20(s, 1H, Ar-H), 7.14-7.19 (m, 1H, Ar-H), 7.25 (d, 1H, J=1.6Hz, Ar-H), 7.30 (s, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃,) δ 21.73,

25.46, 113.68, 117.73, 121.25, 124.75, 125.51, 141.40, 151.75, 152.78,161.32; ESI-MS: 174 [M]+; Anal. calcd for C₁₁H₁₀O₂: C, 75.84; H, 5.79; Found: C, 75.81; H, 5.81%.

6-methoxy-4-methyl-2H-chromen-2-one(2c):

Pale white solid; IR (KBr) (vmax/cm⁻¹): 1714 (C=O); ¹H NMR (400 MHz, CDCl₃) δ 2.24 (s, 3H, C H₃), 3.72 (s,3H, CH₃), 6.27 (s, 1H, Ar-H), 7.22 (d, 1H, J=8.4Hz, Ar-H) 7.32-7.37 (m, 2H, Ar-H); ESI-MS: 190 [M]+; Anal. calcd for C₁₁H₁₀O₃:C, 69.46; H, 5.30; Found: C, 69.81; H, 5.28%.

4,7,8-trimethyl-2H-chromen-2-one(2d): light yellow solid; IR (KBr) (vmax/cm⁻¹): 1716 (C=O); ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 3H, CH₃), 2.39 (s, 3H, CH₃), 2.41 (s, 3H, CH₃), 6.22 (s, 1H, Ar-H), 7.10(d, 1H, J=8Hz, Ar-H), 7.34 (d, 1H, J=8Hz, Ar-H), ESI-MS: 188 [M]+; Anal. calcd for C₁₂H₁₂O₂: C, 76.57; H, 6.43; Found: C, 76.61; H, 6.39%.

4,7-dimethyl-2H-chromen-2-one(2e): light yellow solid; IR (KBr) (vmax/cm⁻¹): 1718 (C=O); ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 6.15 (s, 1H, Ar-H), 7.02-7.07 (m, 2H, Ar-H),7.40 (d, 1H, J=8Hz, Ar-H), ESI-MS: 174 [M]+; Anal. calcd for C₁₁H₁₀O₂: C, 75.84; H, 5.79; Found: C, 75.78; H, 5.74%.

1-methyl-3H-benzo[f]chromen-3-one(2f): light brown solid; IR (KBr) (vmax/cm⁻¹): 1710 (C=O); ¹H NMR (400 MHz, CDCl₃) δ 2.93 (s, 3H, CH₃), 6.38 (s, 1H, Ar-H), 7.45-7.66 (m, 3H, Ar-H), 7.90-7.97 (m, 2H), 8.59 (d, 1H, J=8.4Hz, Ar-H), ESI-MS: 210 [M]+; Anal. calcd for C₁₄H₁₀O₂: C, 79.98; H, 4.79; Found: C, 80.11; H, 4.74%.

7-methoxy-4-methyl-2H-chromen-2-one(2g):

yellow solid; IR (KBr) (vmax/cm⁻¹): 1712 (C=O); ¹H NMR (400 MHz,CDCl₃) δ 2.42 (s, 3H, CH₃), 3.86 (s,3H, OCH₃), 6.30 (s, 1H, Ar-H), 7.02 (d, 1H, J=3.2Hz, Ar-H) 7.09-7.12 (m, 2H, Ar-H), 7.27 (d, 1H, 9.2Hz, Ar-H); ESI-MS: 190 [M]+; Anal. calcd for C₁₁H₁₀O₃: C, 69.46; H, 5.30; Found: C, 69.53; H, 5.35%.

7-chloro-4-methyl-2H-chromen-2-one(2h): Pale yellow; IR (KBr) (vmax/cm⁻¹): 1713 (C=O); ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H, CH₃), 6.15 (s, 1H, Ar- H), 7.02-7.06 (m, 2H, Ar-H), 7.40 (d,

1H, 8Hz, Ar- H); ESI-MS: 194 [M]+, 196[M+2]+; Anal. calcd for C₁₀H₇ClO₂: C, 61.72; H, 3.63; Found: C, 61.69; H, 3.57%.

4. CONCLUSION

We have noted green approaches to establishing decarboxylation of various coumarin-4-carboxylic acids to substitute high-purity coumarin with effective product yields. A simple and effective process using recyclable phosphonium ionic liquid has been reported herein. The selectivity of additional, attractive and useful reaction method. The products are medicinally shown in potent activity.

ACKNOWLEDGMENT

The authors are gratitude to the Chaitanya Deemed to be University of Chancellor and Vice Chancellor for their facilitation of laboratory and financial support.

REFERENCES

- G. R. Green and A. K. Vong, In Comprehensive Heterocyclic Chemistry II, 1st ed.; A. R. Katritzky, C. W.Rees, Pergamon Press Ltd: Oxford, 1984, 5, 469.
- 2) P. K. Upadhyay and P. Kumar, Tetrahedron Letters, 2009, **50**, 236.
- Jagadeesh Kumar Ega , Kavitha Siddoju , International Journal of Research and Applications, 2017,4,15, 568-575.
- 4) Weekly of Chemical Science, 2001, 139–150.
- 5) (a) P. Koenigs, K. Hackeloer and S. R. Waldvogel, Europiean. Journal of Organic Chemistry, 2008, 343; (b) R. Raghunathan, Tetrahedron Lett, 2008, 49, 1812; (c) F.-F, Ye, J.-R. Gao, W.and J.-H. Jia, Dyes Pigments, 2008, 77, 556.
- Jagadeesh Kumar Ega, Kavitha Siddoju, International Journal of Research and Applications, 2017,4,15, 581-584.
- (a) G. Brufola, F. Fringue, O. Piermatti and F. Pizzo, Heterocycles 1996, 43, 1257; (b) M. H. Elnagdi, S. O. Abdallah, K. M. G honeim, E. M. Ebied and N. K. Kawser, Journal of Chemical Res. Synop. 1997, 44.

- 8) V. Singh, J. Singh, K. P. Kaur and G. L. Kad, Journal of Chemical Research. 1997 (S), 58.
- 9) T. S. Li, Z. H. Zhang, F. Yang and C. G.Fu, Journal of Chemical Research. 1998, (S), 38.
- 10) A. J. Nadkarni and N. A. Kudav, Journal of Chemistry. 1981, **20B**, 719.
- 11) S. P. Chavan, K. Shivasankar, R. Sivappa and Ramesh Kale, Tetrahedron, 2002, 43, 8583.
- M. E. Riveiro, A. Moglioni, R. Rubin de Celis, and C. Davioa, Bioorg & Med Chemistry, 2008, 16, 2665.
- 13) P. Niharika, B. V. Ramulu and G. Satyanarayana, Org. Biomol. Chemistry, 2014, 12, 4347.
- 14) B. Vijayakumar and G. Ranga Rao, J Porous Mater, 2012, 19, 233.
- 15) K. Sateesh, T. Dileep and E. Jagadeesh Kumar, International Journal of Research Culture and Society, 2020,4,4,4.

AUTHORS

First Author – Dr. Jagadeesh Kumar Ega finished his M.Sc. from Kavitha Memorial Post-Graduate College, Khammam; M.Phil, from Kakatiya

University, Warangal and Ph.D from Chaitanya Post-Graduate College, Warangal urban; Telangana State, India. He contributed 52 national and international academic publications. He currently working as a professor in Dept., of Chemistry in Chaitanya Deemed to be University. His research areas: Organic synthesis, Hetero cyclic compounds synthesis and biological evaluation, Nano materials, Molecular Docking, Catalysis.

Second Author – Dr. Kavitha Siddoju, finished her B.Sc. from L.B College, Warangal; M.Sc., & Ph.D., from Kakatiya University, Warangal;

Telangana State, India. She contributed 44 national and international academic publications. She currently working as a principal in Chaitanya Deemed to be University. Her research areas: Heterocyclic chemistry, Synthetic organic Chemistry.