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ABSTRACT 
 

In this paper, a method for implementing high speed Finite 

Impulse Response (FIR) filters using just registered adders and 

hardwired shifts is presented. A modified common subexpression 

elimination algorithm is extensively used to reduce the number of 

adders. The target is on optimizations to Xilinx Virtex II devices 

where the implementations are compared with those produced by 

Xilinx CoregenTM using Distributed Arithmetic. It is observed that 

up to 50% reduction in the number of slices and up to 75% 

reduction in the number of LUTs for fully parallel implementations 

and also observed up to 50% reduction in the total dynamic power 

consumption of the filters. The designs implemented in this 

method perform significantly faster than the MAC filters, which 

use embedded multipliers. 
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ABSTRACT 

In this paper, a method for implementing high speed Finite Impulse Response (FIR) filters using just registered 

adders and hardwired shifts is presented. A modified common subexpression elimination algorithm is 

extensively used to reduce the number of adders. The target is on optimizations to Xilinx Virtex II devices 

where the implementations are compared with those produced by Xilinx CoregenTM using Distributed 

Arithmetic. It is observed that up to 50% reduction in the number of slices and up to 75% reduction in the 

number of LUTs for fully parallel implementations and also observed up to 50% reduction in the total dynamic 

power consumption of the filters. The designs implemented in this method perform significantly faster than 

the MAC filters, which use embedded multipliers. 

 
Keywords: Combinational Logic Blocks, Finite Impulse Response Filter, Multiply And Accumulate,  Look Up Table. 

I. INTRODUCTION 

FPGAs are being increasingly used for a variety of 

computationally intensive applications, mainly in the 

realm of Digital Signal Processing (DSP) and 

communications. Due to rapid increases in the 

technology, current generation of FPGAs contain a 

very high number of Configurable Logic Blocks 

(CLBs), and are becoming more feasible for 

implementing a wide range of applications. The high 

non-recurring engineering (NRE) costs and long 

development time for ASICs are making FPGAs 

more attractive for application specific DSP 

solutions. DSP functions such as FIR filters and 

transforms are used in a number of applications such 

as communication and multimedia. These functions 

are major determinants of the performance and 

power consumption of the whole system. Therefore 

it is important to have good tools for optimizing 

these functions. 

 

Eq (1) represents the output of an L tap FIR filter, 

which is the convolution of the latest L input 

samples. L is the number of coefficients h (k) of the 

filter, and x (n) represents the input time series. 

 

y[n] = ∑ h[k] x [n-k] k= 0, 1... L-1 (1) 

The conventional tapped delay line realization of this 

inner product is shown in Figure 1. This 

implementation translates to L multiplications and L-

1 additions per sample to compute the result. This 

can be implemented using a single multiply and 

Accumulate (MAC) engine, but it would require L 

MAC cycles, before the next input sample can be 

processed. Using a parallel implementation with L 

MACs can speed up the performance L times. A 

general purpose multiplier occupies a large area on 

FPGAs. Since all the multiplications are with 

constants, the full flexibility of a general purpose 

multiplier is not required, and the area can be vastly 

reduced using techniques developed for constant 

multiplication. Though most of the current 

generation FPGAs such as Virtex IITM have 

embedded multipliers to handle these 

multiplications, the number of these multipliers is 

typically limited. Furthermore, the size of these 

multipliers is limited to only 18 bits, which limits the 

precision of the computations for high speed 

requirements. The ideal implementation would 

involve a sharing of the Combinational Logic Blocks 

(CLBs) and these multipliers. In this paper, a 

technique that is better than conventional techniques 

for implementation on the CLBs is presented. 
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Fig. 1. A MAC FIR filter block diagram. 

 

An alternative to the above approach is Distributed 

Arithmetic (DA) which is a well known method to 

save resources. Using DA method, the filter can be 

implemented either in bit serial or fully parallel 

mode to trade bandwidth for area utilization. 

Assuming coefficients c[n] are known constants, 

equation (1) can be rewritten as follows: 

 

y[n] = ∑ c[n] · x[n] n = 0, 1, …, N-1  (2) 

x[n] can be represented  by:  

x [n] = ∑ xb [n] · 2b b=0, 1, …, B-1     (3) 

 xb [n] € [0, 1]  

 

Where xb [n] is the bth bit of x[n] and B is the input 

width. Finally, the inner product can be rewritten as 

follows: 

 

y = ∑ c[n] ∑ xb [k] · 2b 

= c[0] (x B-1 [0]2B-1 + x B-2 [0]2B-2 + … + x0 [0]20 ) + c[1] (xB-

1 [1]2B-1 + xB-2 [1]2B-2 + … + x0 [1]2 0 ) + …+ c[N -1] (xB-1 

[N-1]2B-1 + xB-2 [0]2B-2 + … + x0 [N-1]20 ) 

=  (c[0] xB-1 [0] + c[1] xB-1 [1] + … + c[N-1] x B-1 [N-  

1])2B-1  +(c[0] xB-2 [0] + c[1] xB-2 [1] + … + c[N-1] xB-2 [N-  

1])2B-2    

+ … 

[0] + c[1] x0 [1] + … + c[N-1] x0 [N-1])20 

 

+ (c[0] x0  

= ∑ 2b ∑ c[n] · xb [k] (4)  

 

Where n=0, 1… N-1 and b=0, 1… B-1 

The coefficients in most of DSP applications for the 

multiply accumulate operation are constants. The 

partial products are obtained by multiplying the 

coefficients ci by multiplying one bit of data xi at a 

time in AND operation. These partial products 

should be added and the result depends only on the 

outputs of the input shift registers. The AND 

functions and adders can be replaced by Look up 

Tables (LUTs) that gives the partial product. This is 

shown in Figure 2. Input sequence is fed into the 

shift register at the input sample rate. The serial 

output is presented to the RAM based register stores 

the data in a particular address. The outputs of 

registered LUTs are added and loaded to the scaling 

accumulator from LSB to MSB and the result which is 

the filter output will be accumulated over the time. 

For an n bit input, n+1 clock cycles are needed for a 

symmetrical filter to generate the output. Shift 

registers (registers are not shown in Figure for 

simplicity) at the bit clock rate which is n+1 times (n 

is number of bits in a data input sample) the sample 

rate. The RAM based shift  

 

In conventional MAC method with a limited number 

of MAC engines, as the filter length is increased, the 

system sample rate is decreased. This is not the case 

with serial DA architectures since the filter sample 

rate is decoupled from the filter length. As the filter 

length is increased, the throughput is maintained but 

more logic resources are consumed. 

 

Though the serial DA architecture is efficient by 

construction, its performance is limited by the fact 

that the next input sample can be processed only 

after every bit of the current input samples are 

processed. Each bit of the current input samples 

takes one clock cycle to process. 

 

A popular technique for implementing the 

transposed form of FIR filters is the use of a 

multiplier block, instead of using multipliers for each 

constant as shown in Figure 4. The multiplications 

with the set of constants {hk} are replaced by an 

optimized set of additions and shift operations, 

involving computation sharing. Further optimization 

can be done by factorizing the expression and 

finding common sub expressions. The performance 

of this filter architecture is limited by the latency of 

the biggest adder and is the same as that of the PDA. 

 

The main contribution in this paper is the 

development of a novel algorithm for optimizing the 

multiplier block for FIR filters, using a modified 

algorithm for common sub expression elimination. 

The goal of the algorithm is to produce a filter that 

can provide the maximum sample rate with the least 

amount of hardware. Our algorithm takes into 

account             the specific features of FPGA slices to 

reduce the total number of occupied slices. The 

reduced number of slices also leads to a reduction in 

the total power on the FPGA. 
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We compare our results with the industry standard 

Xilinx CoregenTM, where we compare the total area 

and power consumption. 

The rest of the paper is organized as follows: Section 

2 presents some related work. In Section3, we 

describe our filter architecture. In Section 4, we 

present our optimization algorithm for reducing the 

total area of the design. In Section 5, we describe our 

experimental setup and present our results. Finally 

we conclude the paper in Section 6. 

 

II. RELATED WORK 

Multiplications with constants have to be performed 

in many signal processing and communication 

applications such as FIR filters, audio, video and 

image processing. Since implementing a general 

purpose multiplier is expensive on an FPGA and 

since we do not really need such a multiplier, when 

one of the operands is a constant, there has been a lot 

of work on deriving efficient structures for constant 

multiplications. All these techniques are based on 

computing constant multiplications using table 

lookups and additions. The method of Distributed 

Arithmetic which is the most popular method for 

implementing Multiplier less FIR filters, is also based 

on table lookup. The XilinxTM CORE Generator has a 

highly parameterizable, optimized filter core for 

implementing digital FIR filters. Based on both 

Distributed Arithmetic as well as MAC (Multiply 

Accumulate) based architectures. It generates 

synthesized core that targeting a wide range of Xilinx 

devices. The MAC based implementations make use 

of the embedded DSP slices on the FPGA devices. In 

this work, we primarily compare our technique with 

the Coregen implementation of the Distributed 

Arithmetic, since that also is a multiplier less 

technique. We show that our designs are much more 

area efficient than the DA based approach for fully 

parallel filters. We also compare our method with 

MAC based implementations, where we achieve 

significantly higher performance 

Though there has been a lot of work on optimizing 

constant multiplications using adders and employing 

redundancy elimination, they have not been 

effectively used for FIR filter design. The closest 

work to implementing filters with adders is in, FIR 

filters are implemented using the Add and Shift 

method. Canonical Signed Digit (CSD) encoding is 

used for the coefficients to minimize the number of 

additions. The paper discusses how high speed 

implementations can be achieved by registering each 

adder, due to which the critical path becomes equal 

to the delay of the adder. Registering an adder 

output comes at no extra cost on an FPGA because of 

the presence of a D flip flop at the output of each 

LUT. In comparison with, we extensively use 

common subexpression elimination for reducing the 

number of adders and therefore area. Furthermore, 

our designs can run with sample rates as high as 252 

Msps (Million samples per second), whereas the 

designs in can run only at 78.6 Msps. 

In comparison with the other algorithms for common 

subexpression elimination, our method takes into 

account the structure of the FPGA slices and takes 

into account both the cost of adders and registers 

when performing the optimization. Furthermore, we 

provide comprehensive evidence of the benefits of 

our technique through experimental results, where 

we compare our results with those produced by 

industry standard tools 

. 

III. FILTER ARCHITECTURE 

We base our filter architecture on the transposed 

form of the FIR filter as shown in Figure 1. The filter 

can be divided into two main parts, the multiplier 

block and the delay block, and is illustrated in Figure 

4. In the multiplier block, the current input variable 

x[n] is multiplied by all the coefficients of the filter to 

produce the yi outputs. These yi outputs are then trees 

delayed and added in the delay block to produce the 

filter output y[n]. 

We perform all our optimizations in the multiplier 

block. The constant multiplications are decomposed 

into registered additions and hardwire shifts. The 

additions are performed using two input adders, 

which are arranged in the fastest tree structure. We 

use registered adders, so that the performance of the 

filter is only limited by the slowest adder. We use 

common subexpression elimination extensively, to 

reduce the number of adders, which leads to a 

reduction in the area. To synchronize all the 

intermediate values in the computation, we insert 

registers in the dataflow, where 

 

 
Fig. 3. Registered Adder at no additional cost. 
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Performing subexpression elimination can 

sometimes increase the number of registers 

substantially, and the overall area could possibly 

increase. Consider the two expressions F1 and F2 

which could be part of the multiplier block. 

F1 = A + B + C + D 

F2 = A + B + C + E 

Both the expressions have a minimum critical path of 

two addition cycles. These expressions require a total 

of six registered adders for the fastest 

implementation, and no extra registers are required. 

From the expressions we can see that the 

computation A + B + C is common to both the 

expressions. Since both D and E need to wait for two 

addition cycles to be added to (A + B + C), we need to 

use two registers each for D and E, such that new 

values for A,B,C,D and E can be read in at each clock 

cycle. A more careful sub expression elimination 

algorithm would only extract the common sub 

expression A + B (or A+C or B + C). The number of 

adders is decreased by one from the original, and no 

additional registers are added. This is illustrated in 

Figure 8. The algorithm for performing this kind of 

optimization is described in the next section. 

 

 
Fig. 4. Unoptimized expression. 

 

 
Fig. 5. Extracting common subexpression (A+B). 

 

IV. OPTIMIZATION ALGORITHM 

The goal of our optimization is to reduce the area of 

the multiplier block by reducing the number of 

adders and any additional registers required for the 

fastest implementation of the FIR filter. We first give 

a brief overview of the common sub expression 

elimination methods. A detailed description can be 

found in [22]. We then present the modified 

optimization algorithm to be used for our work. 

 

A) Overview of common subexpression elimination 

We use a polynomial transformation of constant 

multiplications. Given a representation for the 

constant C, and the variable X, the multiplication C*X 

can be represented as a summation of terms denoting 

the decomposition of the multiplication into shifts 

and additions as 


i

iXLXC *                     (5) 

The terms can be either positive or negative when the 

constants are represented using signed digit 

representations such as the Canonical Signed Digit 

(CSD) representation. The exponent of L represents 

the magnitude of the left shift and the i’s represent 

the digit positions of the non-zero digits of the 

constants. For example the multiplication 7*X = (100-

1) CSD*X = X<<3 – X = XL3 – X, using the polynomial 

transformation. 

We use the divisors to represent all possible common 

sub expressions. Divisors are obtained from an 

expression by looking at every pair of terms in the 

expression and dividing the terms by the minimum 

exponent of L. For example in the expression F = XL2 

+ XL3 + XL5, consider the pair of terms (+XL2 + XL3). 

The minimum exponent of L in the two terms is L2. 

Dividing by L2, we get the divisor (X + XL). From the 

other two pairs of terms (XL2 + XL5) and (XL3 + XL5), 

we get the divisors (X + XL3) and (X + XL2) 

respectively. These divisors are significant, because 

every common subexpression in the set of 

expressions can be detected by performing 

intersections among the set of divisors. 

B) Optimization algorithm 

We first calculate the minimum number of registers 

required for our design. We calculate this by 

arranging the original expressions in the fastest 

possible tree structure, and then inserting registers. 

For example, for the six term expression F = A + B + C 

+ D + E + F, we have the fastest tree structure with 

three addition steps, and we require one register to 

synchronize the intermediate values, such that new 

values for A, B, C, D, E, F can be read in every clock 

cycle. This is illustrated in Fig. 9.  

 
Fig. 6. Calculating registers required for fastest 

evaluation. 
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Consider the expressions shown in Fig. 6. We need 

six registered adders and no additional registers for 

the fastest evaluation of F1 and F2. Now consider the 

selection of the divisor d1 = (A+B). This divisor saves 

one addition and does not increase the number of 

registers. Divisors (A + C) and (B + C) also have the 

same value, but (A+B) is selected randomly. The 

expressions are now rewritten as: 

 

d1 = (A + B), F1=d1+C+D & F1=d1+C+E 

Optimization algorithm to reduce area: 

Reduce Area ({Pi}) 

{ 

{Pi} = Set of expressions in polynomial form; {D} = Set 

of divisors = ϕ; 

//Step 1: Creating divisors and calculating minimum 

number of registers required 

For each expression Pi in {Pi} 

{ 

{Dnew} = Find Divisors (Pi); 

Update frequency statistics of divisors in {D}; 

{D} = {D} ∪ {Dnew}; 

Pi->MinRegisters = Calculate Minimum registers 

required for fastest evaluation of Pi; 

} 

//Step 2: Iterative selection and elimination of best 

divisor while (1) 

{ 

Find d = Divisor in {D} with greatest Value; 

// Value = Num Additions reduced – Num Registers 

Added; 

If (d == NULL) break; 

Rewrite affected expressions in {Pi} using d; 

Remove divisors in {D} that have become invalid; 

Update frequency statistics of affected divisors; 

{Dnew} = Set of new divisors from new terms added 

by division; 

{D} = {D} ∪ {Dnew}; 

} 

} 

 

After rewriting the expressions and forming new 

divisors, the divisor d2 = (d 1 + C) is considered. This 

divisor saves one adder, but introduces five 

additional registers, as can be seen in Figure 7. 

Therefore this divisor has a value of - 4. No other 

valuable divisors can be found and the iteration 

stops. We end up with the expressions shown in the 

algorithm. 

 

Table 1. Filter Synthesis using Add Shift method. 

Filter 

(# taps) 

Slices LUTs FFs 

Perform

ance 

(Msps) 

6 524 774 1012 245 

10 781 1103 1480 222 

13 929 1311 1775 199 

20 1191 1631 2288 199 

28 1774 2544 3381 199 

41 2475 3642 4748 222 

61 3528 5335 6812 199 

119 6484 9754 12539 205 

151 8274 12525 15988 199 

 

V.  EXPERIMENTS 

The goal of our experiments was to compare the 

number of resources consumed by add and shift 

method with that produced by the cores generated 

by the commercial CoregenTM tool, based on 

Distributed Arithmetic. Besides the resources, we 

also compared the power consumption of the two 

implementations, and also measured the 

performance. For our experiments, we considered 9 

FIR filters of various sizes. We targeted the Xilinx 

Virtex II device for our experiments. The constants 

were normalized to 17 digit of precision and the 

input samples were assumed to be 12 bits wide. 

 
 

 

Table 2. Filter Synthesis using Coregen (PDA method).  

Filter 

(# taps) 

Slices LUTs FFs 

Performa

nce 

(Msps) 

6 264 213 509 251 

10 474 406 916 222 

13 386 334 749 252 

20 856 705 1650 250 

28 1294 1145 2508 227 

41 2154 1719 4161 223 

61 3264 2591 6303 192 

119 6009 4821 11551 203 

151 7579 6098 14611 180 
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From the results we can observe up to 50% reduction 

in dynamic power consumption. We did not include 

the quiescent power into our calculation since that 

value is the same for both methods. The power 

consumption is the result of applying the same test 

stimulus to both designs and measuring the power 

using XPower tools provided by Xilinx ISE software. 

 
Fig. 7. Comparison of Reduction in Resourses for 

considered algorithms. 

 
Fig. 8. Comparison of dynamic power consumption 

for considered algorithms. 

 

Comparison with MAC filters using embedded 

multipliers Coregen TM can produce FIR filters based 

on the Multiply Accumulate (MAC) method, which 

makes use of the embedded multipliers and DSP 

blocks. We implemented the FIR filters using the 

MAC method to compare the resource usage and 

performance with add and shift method. Due to tool 

limitations we had to do the experiments for Virtex 

IV device. We present the synthesis results in terms 

of number of slices on the Virtex IV device and the 

performance in Msps in Table 3. 

 

Table 3. Comparing with MAC filter on VirtexIV. 
 

Filter 

(# 

taps) 

Add Shift 

Method 
MAC Filter 

Slices Msps Slices Msps 

6 264 296 219 262 

10 475 296 418 253 

13 387 296 462 253 

20 851 271 790 251 

28 1303 305 886 251 

41 2178 296 1660 243 

61 3284 247 1947 242 

119 6025 294 3581 241 

151 7623 294 7631 215 
 

VII. CONCLUDING REMARKS 

In this paper we presented a multiplier less 

technique, based on add and shift method and 

common subexpression elimination for low area, low 

power and high speed implementations of FIR filters. 

We validated our techniques on Virtex IITM devices 

where we observed significant area and power 

reductions over traditional Distributed Arithmetic 

based techniques. In future, we would like to modify 

our algorithm to make use of the limited number of 

embedded multipliers available on the FPGA 

devices. 
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