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ABSTRACT

In this paper, a method for implementing high speed Finite Impulse Response (FIR) filters using just registered
adders and hardwired shifts is presented. A modified common subexpression elimination algorithm is
extensively used to reduce the number of adders. The target is on optimizations to Xilinx Virtex II devices
where the implementations are compared with those produced by Xilinx CoregenTM using Distributed
Arithmetic. It is observed that up to 50% reduction in the number of slices and up to 75% reduction in the
number of LUTs for fully parallel implementations and also observed up to 50% reduction in the total dynamic
power consumption of the filters. The designs implemented in this method perform significantly faster than
the MAC filters, which use embedded multipliers.
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I. INTRODUCTION inner product is shown in Figure 1. This

FPGAs are being increasingly used for a variety of
computationally intensive applications, mainly in the
realm of Digital Signal Processing (DSP) and
communications. Due to rapid increases in the
technology, current generation of FPGAs contain a
very high number of Configurable Logic Blocks
(CLBs), and are becoming more feasible for
implementing a wide range of applications. The high
non-recurring engineering (NRE) costs and long
development time for ASICs are making FPGAs
application DSP
solutions. DSP functions such as FIR filters and
transforms are used in a number of applications such
as communication and multimedia. These functions
are major determinants of the performance and
power consumption of the whole system. Therefore
it is important to have good tools for optimizing
these functions.

more attractive for specific

Eq (1) represents the output of an L tap FIR filter,
which is the convolution of the latest L input
samples. L is the number of coefficients h (k) of the
filter, and x (n) represents the input time series.

y[n] =Y h[k] x [n-k] k=0,1..L-1 (1)
The conventional tapped delay line realization of this

implementation translates to L multiplications and L-
1 additions per sample to compute the result. This
can be implemented using a single multiply and
Accumulate (MAC) engine, but it would require L
MAC cycles, before the next input sample can be
processed. Using a parallel implementation with L
MACs can speed up the performance L times. A
general purpose multiplier occupies a large area on
FPGAs. Since all the multiplications are with
constants, the full flexibility of a general purpose
multiplier is not required, and the area can be vastly
reduced using techniques developed for constant

multiplication. Though most of the current
generation FPGAs such as Virtex II™ have
embedded multipliers to  handle these

multiplications, the number of these multipliers is
typically limited. Furthermore, the size of these
multipliers is limited to only 18 bits, which limits the
precision of the computations for high speed
requirements. The ideal implementation would
involve a sharing of the Combinational Logic Blocks
(CLBs) and these multipliers. In this paper, a
technique that is better than conventional techniques
for implementation on the CLBs is presented.
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Fig. 1. A MAC FIR filter block diagram.

An alternative to the above approach is Distributed
Arithmetic (DA) which is a well known method to
save resources. Using DA method, the filter can be
implemented either in bit serial or fully parallel
mode to trade bandwidth for area utilization.
Assuming coefficients c[n] are known constants,
equation (1) can be rewritten as follows:

y[n] =2, c[n] - x[n] n=0,1,...,N-1 (2)

x[n] can be represented by:
x[n]=Yxo[n]-2>  b=0,1,.., B-1 3)
xe [n] €10, 1]

Where xv [n] is the bth bit of x[n] and B is the input
width. Finally, the inner product can be rewritten as
follows:

y =X c[n] ¥ xb [K] - 2°

= [0] (x B1 [0]251 + x B2 [0]2B2 + ... + x0 [0]20 ) + [ 1] (x&-
1 [1]25 + x2 [1]282 + ... +x0 [1]2 0 ) + ...+ [N -1] (x5
[N-1]281 + xp2 [0]252 + ... +x0 [N-1]20 )

= (c[0] xB-1 [0] +c[1] xe1 [1]+ ... +c[N-1] x 51 [N-
17)281 +(c[0] xe2 [0] + c[1] x62 [1] + ... + c[N-1] x2 [N~
1])282

+ ...

+(c[0] X0 [0] +c[1] xo [1] ... + c[N-1] x0 [N-1])2°

=X2°Ycn]-x [k]  (4)

Where n=0, 1... N-1 and b=0, 1... B-1

The coefficients in most of DSP applications for the
multiply accumulate operation are constants. The
partial products are obtained by multiplying the
coefficients c¢i by multiplying one bit of data xi at a
time in AND operation. These partial products
should be added and the result depends only on the
outputs of the input shift registers. The AND
functions and adders can be replaced by Look up
Tables (LUTs) that gives the partial product. This is
shown in Figure 2. Input sequence is fed into the
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shift register at the input sample rate. The serial
output is presented to the RAM based register stores
the data in a particular address. The outputs of
registered LUTs are added and loaded to the scaling
accumulator from LSB to MSB and the result which is
the filter output will be accumulated over the time.
For an n bit input, nt+1 clock cycles are needed for a
symmetrical filter to generate the output. Shift
registers (registers are not shown in Figure for
simplicity) at the bit clock rate which is n+1 times (n
is number of bits in a data input sample) the sample
rate. The RAM based shift

In conventional MAC method with a limited number
of MAC engines, as the filter length is increased, the
system sample rate is decreased. This is not the case
with serial DA architectures since the filter sample
rate is decoupled from the filter length. As the filter
length is increased, the throughput is maintained but
more logic resources are consumed.

Though the serial DA architecture is efficient by
construction, its performance is limited by the fact
that the next input sample can be processed only
after every bit of the current input samples are
processed. Each bit of the current input samples
takes one clock cycle to process.

A popular technique for implementing the
transposed form of FIR filters is the use of a
multiplier block, instead of using multipliers for each
constant as shown in Figure 4. The multiplications
with the set of constants {hi} are replaced by an
optimized set of additions and shift operations,
involving computation sharing. Further optimization
can be done by factorizing the expression and
finding common sub expressions. The performance
of this filter architecture is limited by the latency of
the biggest adder and is the same as that of the PDA.
The main contribution in this paper is the
development of a novel algorithm for optimizing the
multiplier block for FIR filters, using a modified
algorithm for common sub expression elimination.
The goal of the algorithm is to produce a filter that
can provide the maximum sample rate with the least
amount of hardware. Our algorithm takes into
account the specific features of FPGA slices to
reduce the total number of occupied slices. The
reduced number of slices also leads to a reduction in
the total power on the FPGA.

| URA | 2014 | Volume 1| Issue 2

Page |45




We compare our results with the industry standard
Xilinx Coregen™, where we compare the total area
and power consumption.

The rest of the paper is organized as follows: Section
2 presents some related work. In Section3, we
describe our filter architecture. In Section 4, we
present our optimization algorithm for reducing the
total area of the design. In Section 5, we describe our
experimental setup and present our results. Finally
we conclude the paper in Section 6.

II. RELATED WORK

Multiplications with constants have to be performed
in many signal processing and communication
applications such as FIR filters, audio, video and
image processing. Since implementing a general
purpose multiplier is expensive on an FPGA and
since we do not really need such a multiplier, when
one of the operands is a constant, there has been a lot
of work on deriving efficient structures for constant
multiplications. All these techniques are based on
computing constant multiplications using table
lookups and additions. The method of Distributed
Arithmetic which is the most popular method for
implementing Multiplier less FIR filters, is also based
on table lookup. The Xilinx™ CORE Generator has a
highly parameterizable, optimized filter core for
implementing digital FIR filters. Based on both
Distributed Arithmetic as well as MAC (Multiply
Accumulate) based
synthesized core that targeting a wide range of Xilinx
devices. The MAC based implementations make use
of the embedded DSP slices on the FPGA devices. In
this work, we primarily compare our technique with
the Coregen implementation of the Distributed
Arithmetic, since that also is a multiplier less
technique. We show that our designs are much more
area efficient than the DA based approach for fully
parallel filters. We also compare our method with
MAC based implementations, where we achieve
significantly higher performance

Though there has been a lot of work on optimizing
constant multiplications using adders and employing
redundancy elimination, they have not been
effectively used for FIR filter design. The closest
work to implementing filters with adders is in, FIR
filters are implemented using the Add and Shift
method. Canonical Signed Digit (CSD) encoding is
used for the coefficients to minimize the number of
additions. The paper discusses how high speed
implementations can be achieved by registering each

architectures. It generates
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adder, due to which the critical path becomes equal
to the delay of the adder. Registering an adder
output comes at no extra cost on an FPGA because of
the presence of a D flip flop at the output of each
LUT. In comparison with, we extensively use
common subexpression elimination for reducing the
number of adders and therefore area. Furthermore,
our designs can run with sample rates as high as 252
Msps (Million samples per second), whereas the
designs in can run only at 78.6 Msps.

In comparison with the other algorithms for common
subexpression elimination, our method takes into
account the structure of the FPGA slices and takes
into account both the cost of adders and registers
when performing the optimization. Furthermore, we
provide comprehensive evidence of the benefits of
our technique through experimental results, where
we compare our results with those produced by
industry standard tools

III. FILTER ARCHITECTURE

We base our filter architecture on the transposed
form of the FIR filter as shown in Figure 1. The filter
can be divided into two main parts, the multiplier
block and the delay block, and is illustrated in Figure
4. In the multiplier block, the current input variable
x[n] is multiplied by all the coefficients of the filter to
produce the yi outputs. These yi outputs are then trees
delayed and added in the delay block to produce the
filter output y[n].

We perform all our optimizations in the multiplier
block. The constant multiplications are decomposed
into registered additions and hardwire shifts. The
additions are performed using two input adders,
which are arranged in the fastest tree structure. We
use registered adders, so that the performance of the
filter is only limited by the slowest adder. We use
common subexpression elimination extensively, to
reduce the number of adders, which leads to a
reduction in the area. To synchronize all the
intermediate values in the computation, we insert
registers in the dataflow, where

() ()

Fig. 3. Registered Adder at no additional cost.
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Performing subexpression elimination can

sometimes increase the number of registers
substantially, and the overall area could possibly
increase. Consider the two expressions F1 and F:
which could be part of the multiplier block.
Fi=A+B+C+D

Fo=A+B+C+E

Both the expressions have a minimum critical path of
two addition cycles. These expressions require a total
adders for the fastest
implementation, and no extra registers are required.
expressions we can see that the
computation A + B + C is common to both the
expressions. Since both D and E need to wait for two
addition cycles to be added to (A + B + C), we need to
use two registers each for D and E, such that new
values for A,B,C,D and E can be read in at each clock

cycle. A more careful sub expression elimination

of six registered

From the

algorithm would only extract the common sub
expression A + B (or A+C or B + C). The number of
adders is decreased by one from the original, and no
additional registers are added. This is illustrated in
Figure 8. The algorithm for performing this kind of
optimization is described in the next section.

A ]

Fig. 4. Unoptimized expression.

o A B ¢ ¢ O A B € E

.a..*‘.’-i-f:a g
ol 2 3 &
£ X

*x
Fig. 5. Extracting common subexpression (A+B).

IV. OPTIMIZATION ALGORITHM

The goal of our optimization is to reduce the area of
the multiplier block by reducing the number of
adders and any additional registers required for the
fastest implementation of the FIR filter. We first give
a brief overview of the common sub expression
elimination methods. A detailed description can be
found in [22]. We then present the modified
optimization algorithm to be used for our work.
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A) Overview of common subexpression elimination
We use a polynomial transformation of constant
multiplications. Given a representation for the
constant C, and the variable X, the multiplication C*X
can be represented as a summation of terms denoting
the decomposition of the multiplication into shifts
and additions as

C*X =>£XLU (5)

The terms can be either positive or negative when the
signed digit
representations such as the Canonical Signed Digit
(CSD) representation. The exponent of L represents
the magnitude of the left shift and the i’s represent

constants are represented using

the digit positions of the non-zero digits of the
constants. For example the multiplication 7*X = (100-
1) csp*X = X<<3 — X = XL? - X, using the polynomial
transformation.

We use the divisors to represent all possible common
sub expressions. Divisors are obtained from an
expression by looking at every pair of terms in the
expression and dividing the terms by the minimum
exponent of L. For example in the expression F = XL2
+ XL3 + XL5, consider the pair of terms (+XL2 + XL3).
The minimum exponent of L in the two terms is L2
Dividing by L?, we get the divisor (X + XL). From the
other two pairs of terms (XL2? + XL5) and (XL3 + XL5),
we get the divisors (X + XL3) and (X + XL?)
respectively. These divisors are significant, because
common subexpression in the set of
expressions can be detected by performing
intersections among the set of divisors.

B) Optimization algorithm

every

We first calculate the minimum number of registers
required for our design. We calculate this by
arranging the original expressions in the fastest
possible tree structure, and then inserting registers.
For example, for the six term expression F=A +B +C
+ D + E + F, we have the fastest tree structure with
three addition steps, and we require one register to
synchronize the intermediate values, such that new
values for A, B, C, D, E, F can be read in every clock
cycle. This is illustrated in Fig. 9.

.~ r wr -
2 2 2
¥

Fig. 6. Calculating registers required for fastest
evaluation.
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Consider the expressions shown in Fig. 6. We need
six registered adders and no additional registers for
the fastest evaluation of Fi and F2. Now consider the
selection of the divisor di1 = (A+B). This divisor saves
one addition and does not increase the number of
registers. Divisors (A + C) and (B + C) also have the
same value, but (A+B) is selected randomly. The
expressions are now rewritten as:

di = (A + B), Fi=d1+C+D & Fi=d1+C+E

Optimization algorithm to reduce area:

Reduce Area ({Pi})

{

{Pi} = Set of expressions in polynomial form; {D} = Set
of divisors = ¢;

//Step 1: Creating divisors and calculating minimum
number of registers required

For each expression Pi in {Pi}

{

{Drew} = Find Divisors (Pi);

Update frequency statistics of divisors in {D};

{D} = {D} U {Dnew};
Pi>MinRegisters =
required for fastest evaluation of P;;

}

/[Step 2: Iterative selection and elimination of best
divisor while (1)

{

Find d = Divisor in {D} with greatest Value;

// Value = Num Additions reduced — Num Registers
Added;

If (d == NULL) break;

Rewrite affected expressions in {Pi} using d;

Calculate Minimum registers

Remove divisors in {D} that have become invalid;
Update frequency statistics of affected divisors;
{Drnew} = Set of new divisors from new terms added
by division;

{D} = {D} U {Drew};

}

}

After rewriting the expressions and forming new
divisors, the divisor dz2 = (d 1 + C) is considered. This
divisor saves one adder, but
additional registers, as can be seen in Figure 7.
Therefore this divisor has a value of - 4. No other
valuable divisors can be found and the iteration
stops. We end up with the expressions shown in the
algorithm.

introduces five

Table 1. Filter Synthesis using Add Shift method.
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Filter Perform
Slices LUTs FFs ance
(# taps) (Msps)

6 524 774 1012 245
10 781 1103 1480 222
13 929 1311 1775 199
20 1191 1631 2288 199
28 1774 2544 3381 199
41 2475 3642 4748 222
61 3528 5335 6812 199
119 6484 9754 12539 205
151 8274 12525 15988 199

V. EXPERIMENTS

The goal of our experiments was to compare the
number of resources consumed by add and shift
method with that produced by the cores generated
by the commercial Coregen™ tool, based on
Distributed Arithmetic. Besides the resources, we
also compared the power consumption of the two
implementations, and also measured the
performance. For our experiments, we considered 9
FIR filters of various sizes. We targeted the Xilinx
Virtex II device for our experiments. The constants
were normalized to 17 digit of precision and the

input samples were assumed to be 12 bits wide.

Table 2. Filter Synthesis using Coregen (PDA method).

Filter Performa
Slices LUTs FFs nce
(# taps) (Msps)

6 264 213 509 251
10 474 406 916 222
13 386 334 749 252
20 856 705 1650 250
28 1294 1145 2508 227
41 2154 1719 4161 223
61 3264 2591 6303 192
119 6009 4821 11551 203
151 7579 6098 14611 180
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From the results we can observe up to 50% reduction
in dynamic power consumption. We did not include
the quiescent power into our calculation since that
value is the same for both methods. The power
consumption is the result of applying the same test
stimulus to both designs and measuring the power
using XPower tools provided by Xilinx ISE software.

Reducticn In Rescurcss

FaRedus )

Fig. 7. Comparison of Reduction in Resourses for
considered algorithms.

Dynamic Powsr Censumption

Fig. 8. Comparison of dynamic power consumption
for considered algorithms.

Comparison with MAC filters using embedded
multipliers Coregen ™ can produce FIR filters based
on the Multiply Accumulate (MAC) method, which
makes use of the embedded multipliers and DSP
blocks. We implemented the FIR filters using the
MAC method to compare the resource usage and
performance with add and shift method. Due to tool
limitations we had to do the experiments for Virtex
IV device. We present the synthesis results in terms
of number of slices on the Virtex IV device and the
performance in Msps in Table 3.

Table 3. Comparing with MAC filter on VirtexIV.

Filter Add Shift
(# Method
taps) | Slices | Msps | Slices | Msps
6 264 296 219 262
10 475 296 418 253
13 387 296 462 253
20 851 271 790 251

MAC Filter

International Journal of Research and Applications
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28 1303 305 886 251
41 2178 296 1660 243
61 3284 247 1947 242
119 6025 294 3581 241
151 7623 294 7631 215

VII. CONCLUDING REMARKS

In this paper we presented a multiplier less
technique, based on add and shift method and
common subexpression elimination for low area, low
power and high speed implementations of FIR filters.
We validated our techniques on Virtex II™ devices
where we observed significant area and power
reductions over traditional Distributed Arithmetic
based techniques. In future, we would like to modify
our algorithm to make use of the limited number of
embedded multipliers available on the FPGA
devices.
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