
April - June © 2014 Transactions; 1(2): 44-49

Research Article

High speed fir filters using add and shift method based on FPGA

 Ch.Venkateswarlu 1 and T.Anilkumar 2

Corresponding Author:

tvakumar2000@yahoo.co.in

DOI:

http://dx.doi.org/

10.17812/IJRA.1.2(9)2014

Manuscript:

Received: 25th April, 2014

Accepted: 18th May, 2014

Published: 31st May, 2014

ABSTRACT

In this paper, a method for implementing high speed Finite

Impulse Response (FIR) filters using just registered adders and

hardwired shifts is presented. A modified common subexpression

elimination algorithm is extensively used to reduce the number of

adders. The target is on optimizations to Xilinx Virtex II devices

where the implementations are compared with those produced by

Xilinx CoregenTM using Distributed Arithmetic. It is observed that

up to 50% reduction in the number of slices and up to 75%

reduction in the number of LUTs for fully parallel implementations

and also observed up to 50% reduction in the total dynamic power

consumption of the filters. The designs implemented in this

method perform significantly faster than the MAC filters, which

use embedded multipliers.

Keywords: Combinational Logic Blocks, Finite Impulse Response

Filter, Multiply and Accumulate, Look up Table.

1 Department of ECE, Vaageswari Engineering College, Karimnagar, India 505 481.
2 Department of ECE, SR Engineering College, Warangal, India 506 371.

.

IJRA - Year of 2014 Transactions:

Month: April - June

Volume – 1, Issue – 2, Page No’s: 44 - 49

Subject Stream: Electronics

Paper Communication: Author Direct

Paper Reference Id: IJRA-2014: 1(2)44-49

International Journal of Research and Applications

ISSN (online): 2349-0020 http://www.ijraonline.com/

http://dx.doi.org/
http://www.ijraonline.com/

IJRA | 2014 | Volume 1 | Issue 2 P a g e | 44

E L E C T R O N I C S R E S E A R C H A R T I C L E

High speed fir filters using add and shift method based on FPGA

Ch.Venkateswarlu 1 and T.Anilkumar 2
1Department of ECE, Vaageswari Engineering College, Karimnagar, India 505 481.

2Department of ECE, SR Engineering College, Warangal, India 506 371.
1ecehodum@gmail.com and 2tvakumar2000@yahoo.co.in

ABSTRACT

In this paper, a method for implementing high speed Finite Impulse Response (FIR) filters using just registered

adders and hardwired shifts is presented. A modified common subexpression elimination algorithm is

extensively used to reduce the number of adders. The target is on optimizations to Xilinx Virtex II devices

where the implementations are compared with those produced by Xilinx CoregenTM using Distributed

Arithmetic. It is observed that up to 50% reduction in the number of slices and up to 75% reduction in the

number of LUTs for fully parallel implementations and also observed up to 50% reduction in the total dynamic

power consumption of the filters. The designs implemented in this method perform significantly faster than

the MAC filters, which use embedded multipliers.

Keywords: Combinational Logic Blocks, Finite Impulse Response Filter, Multiply And Accumulate, Look Up Table.

I. INTRODUCTION

FPGAs are being increasingly used for a variety of

computationally intensive applications, mainly in the

realm of Digital Signal Processing (DSP) and

communications. Due to rapid increases in the

technology, current generation of FPGAs contain a

very high number of Configurable Logic Blocks

(CLBs), and are becoming more feasible for

implementing a wide range of applications. The high

non-recurring engineering (NRE) costs and long

development time for ASICs are making FPGAs

more attractive for application specific DSP

solutions. DSP functions such as FIR filters and

transforms are used in a number of applications such

as communication and multimedia. These functions

are major determinants of the performance and

power consumption of the whole system. Therefore

it is important to have good tools for optimizing

these functions.

Eq (1) represents the output of an L tap FIR filter,

which is the convolution of the latest L input

samples. L is the number of coefficients h (k) of the

filter, and x (n) represents the input time series.

y[n] = ∑ h[k] x [n-k] k= 0, 1... L-1 (1)

The conventional tapped delay line realization of this

inner product is shown in Figure 1. This

implementation translates to L multiplications and L-

1 additions per sample to compute the result. This

can be implemented using a single multiply and

Accumulate (MAC) engine, but it would require L

MAC cycles, before the next input sample can be

processed. Using a parallel implementation with L

MACs can speed up the performance L times. A

general purpose multiplier occupies a large area on

FPGAs. Since all the multiplications are with

constants, the full flexibility of a general purpose

multiplier is not required, and the area can be vastly

reduced using techniques developed for constant

multiplication. Though most of the current

generation FPGAs such as Virtex IITM have

embedded multipliers to handle these

multiplications, the number of these multipliers is

typically limited. Furthermore, the size of these

multipliers is limited to only 18 bits, which limits the

precision of the computations for high speed

requirements. The ideal implementation would

involve a sharing of the Combinational Logic Blocks

(CLBs) and these multipliers. In this paper, a

technique that is better than conventional techniques

for implementation on the CLBs is presented.

International Journal of Research and Applications

April - June © 2014 Transactions; 1(2): 44-49 ISSN (online): 2349-0020

http://ijraonline.com

mailto:ecehodum@gmail.com
mailto:tvakumar2000@yahoo.co.in

International Journal of Research and Applications

Apr - Jun © 2014 Transactions

IJRA | 2014 | Volume 1 | Issue 2 P a g e | 45

Fig. 1. A MAC FIR filter block diagram.

An alternative to the above approach is Distributed

Arithmetic (DA) which is a well known method to

save resources. Using DA method, the filter can be

implemented either in bit serial or fully parallel

mode to trade bandwidth for area utilization.

Assuming coefficients c[n] are known constants,

equation (1) can be rewritten as follows:

y[n] = ∑ c[n] · x[n] n = 0, 1, …, N-1 (2)

x[n] can be represented by:

x [n] = ∑ xb [n] · 2b b=0, 1, …, B-1 (3)

 xb [n] € [0, 1]

Where xb [n] is the bth bit of x[n] and B is the input

width. Finally, the inner product can be rewritten as

follows:

y = ∑ c[n] ∑ xb [k] · 2b

= c[0] (x B-1 [0]2B-1 + x B-2 [0]2B-2 + … + x0 [0]20) + c[1] (xB-

1 [1]2B-1 + xB-2 [1]2B-2 + … + x0 [1]2 0) + …+ c[N -1] (xB-1

[N-1]2B-1 + xB-2 [0]2B-2 + … + x0 [N-1]20)

= (c[0] xB-1 [0] + c[1] xB-1 [1] + … + c[N-1] x B-1 [N-

1])2B-1 +(c[0] xB-2 [0] + c[1] xB-2 [1] + … + c[N-1] xB-2 [N-

1])2B-2

+ …

[0] + c[1] x0 [1] + … + c[N-1] x0 [N-1])20

+ (c[0] x0

= ∑ 2b ∑ c[n] · xb [k] (4)

Where n=0, 1… N-1 and b=0, 1… B-1

The coefficients in most of DSP applications for the

multiply accumulate operation are constants. The

partial products are obtained by multiplying the

coefficients ci by multiplying one bit of data xi at a

time in AND operation. These partial products

should be added and the result depends only on the

outputs of the input shift registers. The AND

functions and adders can be replaced by Look up

Tables (LUTs) that gives the partial product. This is

shown in Figure 2. Input sequence is fed into the

shift register at the input sample rate. The serial

output is presented to the RAM based register stores

the data in a particular address. The outputs of

registered LUTs are added and loaded to the scaling

accumulator from LSB to MSB and the result which is

the filter output will be accumulated over the time.

For an n bit input, n+1 clock cycles are needed for a

symmetrical filter to generate the output. Shift

registers (registers are not shown in Figure for

simplicity) at the bit clock rate which is n+1 times (n

is number of bits in a data input sample) the sample

rate. The RAM based shift

In conventional MAC method with a limited number

of MAC engines, as the filter length is increased, the

system sample rate is decreased. This is not the case

with serial DA architectures since the filter sample

rate is decoupled from the filter length. As the filter

length is increased, the throughput is maintained but

more logic resources are consumed.

Though the serial DA architecture is efficient by

construction, its performance is limited by the fact

that the next input sample can be processed only

after every bit of the current input samples are

processed. Each bit of the current input samples

takes one clock cycle to process.

A popular technique for implementing the

transposed form of FIR filters is the use of a

multiplier block, instead of using multipliers for each

constant as shown in Figure 4. The multiplications

with the set of constants {hk} are replaced by an

optimized set of additions and shift operations,

involving computation sharing. Further optimization

can be done by factorizing the expression and

finding common sub expressions. The performance

of this filter architecture is limited by the latency of

the biggest adder and is the same as that of the PDA.

The main contribution in this paper is the

development of a novel algorithm for optimizing the

multiplier block for FIR filters, using a modified

algorithm for common sub expression elimination.

The goal of the algorithm is to produce a filter that

can provide the maximum sample rate with the least

amount of hardware. Our algorithm takes into

account the specific features of FPGA slices to

reduce the total number of occupied slices. The

reduced number of slices also leads to a reduction in

the total power on the FPGA.

International Journal of Research and Applications

Apr - Jun © 2014 Transactions

IJRA | 2014 | Volume 1 | Issue 2 P a g e | 46

We compare our results with the industry standard

Xilinx CoregenTM, where we compare the total area

and power consumption.

The rest of the paper is organized as follows: Section

2 presents some related work. In Section3, we

describe our filter architecture. In Section 4, we

present our optimization algorithm for reducing the

total area of the design. In Section 5, we describe our

experimental setup and present our results. Finally

we conclude the paper in Section 6.

II. RELATED WORK

Multiplications with constants have to be performed

in many signal processing and communication

applications such as FIR filters, audio, video and

image processing. Since implementing a general

purpose multiplier is expensive on an FPGA and

since we do not really need such a multiplier, when

one of the operands is a constant, there has been a lot

of work on deriving efficient structures for constant

multiplications. All these techniques are based on

computing constant multiplications using table

lookups and additions. The method of Distributed

Arithmetic which is the most popular method for

implementing Multiplier less FIR filters, is also based

on table lookup. The XilinxTM CORE Generator has a

highly parameterizable, optimized filter core for

implementing digital FIR filters. Based on both

Distributed Arithmetic as well as MAC (Multiply

Accumulate) based architectures. It generates

synthesized core that targeting a wide range of Xilinx

devices. The MAC based implementations make use

of the embedded DSP slices on the FPGA devices. In

this work, we primarily compare our technique with

the Coregen implementation of the Distributed

Arithmetic, since that also is a multiplier less

technique. We show that our designs are much more

area efficient than the DA based approach for fully

parallel filters. We also compare our method with

MAC based implementations, where we achieve

significantly higher performance

Though there has been a lot of work on optimizing

constant multiplications using adders and employing

redundancy elimination, they have not been

effectively used for FIR filter design. The closest

work to implementing filters with adders is in, FIR

filters are implemented using the Add and Shift

method. Canonical Signed Digit (CSD) encoding is

used for the coefficients to minimize the number of

additions. The paper discusses how high speed

implementations can be achieved by registering each

adder, due to which the critical path becomes equal

to the delay of the adder. Registering an adder

output comes at no extra cost on an FPGA because of

the presence of a D flip flop at the output of each

LUT. In comparison with, we extensively use

common subexpression elimination for reducing the

number of adders and therefore area. Furthermore,

our designs can run with sample rates as high as 252

Msps (Million samples per second), whereas the

designs in can run only at 78.6 Msps.

In comparison with the other algorithms for common

subexpression elimination, our method takes into

account the structure of the FPGA slices and takes

into account both the cost of adders and registers

when performing the optimization. Furthermore, we

provide comprehensive evidence of the benefits of

our technique through experimental results, where

we compare our results with those produced by

industry standard tools

.

III. FILTER ARCHITECTURE

We base our filter architecture on the transposed

form of the FIR filter as shown in Figure 1. The filter

can be divided into two main parts, the multiplier

block and the delay block, and is illustrated in Figure

4. In the multiplier block, the current input variable

x[n] is multiplied by all the coefficients of the filter to

produce the yi outputs. These yi outputs are then trees

delayed and added in the delay block to produce the

filter output y[n].

We perform all our optimizations in the multiplier

block. The constant multiplications are decomposed

into registered additions and hardwire shifts. The

additions are performed using two input adders,

which are arranged in the fastest tree structure. We

use registered adders, so that the performance of the

filter is only limited by the slowest adder. We use

common subexpression elimination extensively, to

reduce the number of adders, which leads to a

reduction in the area. To synchronize all the

intermediate values in the computation, we insert

registers in the dataflow, where

Fig. 3. Registered Adder at no additional cost.

International Journal of Research and Applications

Apr - Jun © 2014 Transactions

IJRA | 2014 | Volume 1 | Issue 2 P a g e | 47

Performing subexpression elimination can

sometimes increase the number of registers

substantially, and the overall area could possibly

increase. Consider the two expressions F1 and F2

which could be part of the multiplier block.

F1 = A + B + C + D

F2 = A + B + C + E

Both the expressions have a minimum critical path of

two addition cycles. These expressions require a total

of six registered adders for the fastest

implementation, and no extra registers are required.

From the expressions we can see that the

computation A + B + C is common to both the

expressions. Since both D and E need to wait for two

addition cycles to be added to (A + B + C), we need to

use two registers each for D and E, such that new

values for A,B,C,D and E can be read in at each clock

cycle. A more careful sub expression elimination

algorithm would only extract the common sub

expression A + B (or A+C or B + C). The number of

adders is decreased by one from the original, and no

additional registers are added. This is illustrated in

Figure 8. The algorithm for performing this kind of

optimization is described in the next section.

Fig. 4. Unoptimized expression.

Fig. 5. Extracting common subexpression (A+B).

IV. OPTIMIZATION ALGORITHM

The goal of our optimization is to reduce the area of

the multiplier block by reducing the number of

adders and any additional registers required for the

fastest implementation of the FIR filter. We first give

a brief overview of the common sub expression

elimination methods. A detailed description can be

found in [22]. We then present the modified

optimization algorithm to be used for our work.

A) Overview of common subexpression elimination

We use a polynomial transformation of constant

multiplications. Given a representation for the

constant C, and the variable X, the multiplication C*X

can be represented as a summation of terms denoting

the decomposition of the multiplication into shifts

and additions as


i

iXLXC * (5)

The terms can be either positive or negative when the

constants are represented using signed digit

representations such as the Canonical Signed Digit

(CSD) representation. The exponent of L represents

the magnitude of the left shift and the i’s represent

the digit positions of the non-zero digits of the

constants. For example the multiplication 7*X = (100-

1) CSD*X = X<<3 – X = XL3 – X, using the polynomial

transformation.

We use the divisors to represent all possible common

sub expressions. Divisors are obtained from an

expression by looking at every pair of terms in the

expression and dividing the terms by the minimum

exponent of L. For example in the expression F = XL2

+ XL3 + XL5, consider the pair of terms (+XL2 + XL3).

The minimum exponent of L in the two terms is L2.

Dividing by L2, we get the divisor (X + XL). From the

other two pairs of terms (XL2 + XL5) and (XL3 + XL5),

we get the divisors (X + XL3) and (X + XL2)

respectively. These divisors are significant, because

every common subexpression in the set of

expressions can be detected by performing

intersections among the set of divisors.

B) Optimization algorithm

We first calculate the minimum number of registers

required for our design. We calculate this by

arranging the original expressions in the fastest

possible tree structure, and then inserting registers.

For example, for the six term expression F = A + B + C

+ D + E + F, we have the fastest tree structure with

three addition steps, and we require one register to

synchronize the intermediate values, such that new

values for A, B, C, D, E, F can be read in every clock

cycle. This is illustrated in Fig. 9.

Fig. 6. Calculating registers required for fastest

evaluation.

International Journal of Research and Applications

Apr - Jun © 2014 Transactions

IJRA | 2014 | Volume 1 | Issue 2 P a g e | 48

Consider the expressions shown in Fig. 6. We need

six registered adders and no additional registers for

the fastest evaluation of F1 and F2. Now consider the

selection of the divisor d1 = (A+B). This divisor saves

one addition and does not increase the number of

registers. Divisors (A + C) and (B + C) also have the

same value, but (A+B) is selected randomly. The

expressions are now rewritten as:

d1 = (A + B), F1=d1+C+D & F1=d1+C+E

Optimization algorithm to reduce area:

Reduce Area ({Pi})

{

{Pi} = Set of expressions in polynomial form; {D} = Set

of divisors = ϕ;

//Step 1: Creating divisors and calculating minimum

number of registers required

For each expression Pi in {Pi}

{

{Dnew} = Find Divisors (Pi);

Update frequency statistics of divisors in {D};

{D} = {D} ∪ {Dnew};

Pi->MinRegisters = Calculate Minimum registers

required for fastest evaluation of Pi;

}

//Step 2: Iterative selection and elimination of best

divisor while (1)

{

Find d = Divisor in {D} with greatest Value;

// Value = Num Additions reduced – Num Registers

Added;

If (d == NULL) break;

Rewrite affected expressions in {Pi} using d;

Remove divisors in {D} that have become invalid;

Update frequency statistics of affected divisors;

{Dnew} = Set of new divisors from new terms added

by division;

{D} = {D} ∪ {Dnew};

}

}

After rewriting the expressions and forming new

divisors, the divisor d2 = (d 1 + C) is considered. This

divisor saves one adder, but introduces five

additional registers, as can be seen in Figure 7.

Therefore this divisor has a value of - 4. No other

valuable divisors can be found and the iteration

stops. We end up with the expressions shown in the

algorithm.

Table 1. Filter Synthesis using Add Shift method.

Filter

(# taps)

Slices LUTs FFs

Perform

ance

(Msps)

6 524 774 1012 245

10 781 1103 1480 222

13 929 1311 1775 199

20 1191 1631 2288 199

28 1774 2544 3381 199

41 2475 3642 4748 222

61 3528 5335 6812 199

119 6484 9754 12539 205

151 8274 12525 15988 199

V. EXPERIMENTS

The goal of our experiments was to compare the

number of resources consumed by add and shift

method with that produced by the cores generated

by the commercial CoregenTM tool, based on

Distributed Arithmetic. Besides the resources, we

also compared the power consumption of the two

implementations, and also measured the

performance. For our experiments, we considered 9

FIR filters of various sizes. We targeted the Xilinx

Virtex II device for our experiments. The constants

were normalized to 17 digit of precision and the

input samples were assumed to be 12 bits wide.

Table 2. Filter Synthesis using Coregen (PDA method).

Filter

(# taps)

Slices LUTs FFs

Performa

nce

(Msps)

6 264 213 509 251

10 474 406 916 222

13 386 334 749 252

20 856 705 1650 250

28 1294 1145 2508 227

41 2154 1719 4161 223

61 3264 2591 6303 192

119 6009 4821 11551 203

151 7579 6098 14611 180

International Journal of Research and Applications

Apr - Jun © 2014 Transactions

IJRA | 2014 | Volume 1 | Issue 2 P a g e | 49

From the results we can observe up to 50% reduction

in dynamic power consumption. We did not include

the quiescent power into our calculation since that

value is the same for both methods. The power

consumption is the result of applying the same test

stimulus to both designs and measuring the power

using XPower tools provided by Xilinx ISE software.

Fig. 7. Comparison of Reduction in Resourses for

considered algorithms.

Fig. 8. Comparison of dynamic power consumption

for considered algorithms.

Comparison with MAC filters using embedded

multipliers Coregen TM can produce FIR filters based

on the Multiply Accumulate (MAC) method, which

makes use of the embedded multipliers and DSP

blocks. We implemented the FIR filters using the

MAC method to compare the resource usage and

performance with add and shift method. Due to tool

limitations we had to do the experiments for Virtex

IV device. We present the synthesis results in terms

of number of slices on the Virtex IV device and the

performance in Msps in Table 3.

Table 3. Comparing with MAC filter on VirtexIV.

Filter

(#

taps)

Add Shift

Method
MAC Filter

Slices Msps Slices Msps

6 264 296 219 262

10 475 296 418 253

13 387 296 462 253

20 851 271 790 251

28 1303 305 886 251

41 2178 296 1660 243

61 3284 247 1947 242

119 6025 294 3581 241

151 7623 294 7631 215

VII. CONCLUDING REMARKS

In this paper we presented a multiplier less

technique, based on add and shift method and

common subexpression elimination for low area, low

power and high speed implementations of FIR filters.

We validated our techniques on Virtex IITM devices

where we observed significant area and power

reductions over traditional Distributed Arithmetic

based techniques. In future, we would like to modify

our algorithm to make use of the limited number of

embedded multipliers available on the FPGA

devices.

REFERENCES

[1] K.D.Underwood and K.S.Hemmert, "Closing

the Gap: CPU and FPGA Trends in Sustainable

Floating-Point BLAS Performance," presented at

Intl. Symp. On Field-Programmable Custom

Computing Machines, California, USA, 2004.

[2] L.Zhuo and V.K.Prasanna, "Sparse Matrix-

Vector Multiplication on FPGAs," presented at

Intl. Symp. On Field Programmable Gate Arrays

(FPGA), Monterey, CA, 2005.

[3] Y.Meng, A.P.Brown, R.A.Iltis, T.Sherwood,

H.Lee, and R.Kastner, "MP Core: Algorithm and

Design Techniques for Efficient Channel

Estimation in Wireless Applications," presented

at Design Automation Conference (DAC),

Anaheim, CA, 2005.

[4] B. L. Hutchings and B. E. Nelson, "Gigaop

DSP on FPGA," presented at Acoustics, Speech,

and Signal Processing, 2001. Proceedings.

(ICASSP '01). 2001 IEEE Intl. Conf. on, 2001.

[5] A.Alsolaim, J.Becker, M.Glesner, and

J.Starzyk, "Architecture and Application of a

Dynamically Reconfigurable Hardware Array

for Future Mobile Communication Systems,"

presented at Intl. Symp. On Field Programmable

Custom Computing Machines (FCCM), 2000.

[6] FPGA," presented at Intl. Symp. On Field-

Programmable Custom Computing Machines

(FCCM), 2002.

