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ABSTRACT

We propose an adaptive affine combination of two adaptive filters in that combination select one is fast and one
slow. In this paper we proposed LMS, NMLS and CMA algorithm technique. By using these algorithm
techniques we calculate the mixing parameter () at every instant and the performance of the measurement
parameter that is excess mean square error EMSE is varied with the step size (i) according to the variation the
step size we achieve the good convergence rate and its adaptation is also taken into account in the transient
analysis and steady state analysis. The proposed combination should acquire the good convergence properties
for all kinds of stationary and non stationary environments. The resulting combination should profit than
single filter technique.

Keywords: Adaptive filters, transient analysis, steady state analysis, EMSE, CMA.

I. INTRODUCTION Steady-state analysis two LMS filters, two NLMS

One of the most popular algorithms for adaptive
filtering is the LMS algorithm. LMS adjusts the
adaptive filter weights and modifying them by an
amount proportional to the instantaneous estimate of
the gradient of the error surface [1]. It neither
requires correlation function and matrix inversions
method, which makes it simple and easy when
compared to other algorithms.

Minimization of MSE is achieved due to the iterative
procedure incorporated in it[2].To make successive
corrections in the direction of negative of the
gradient vector of it .The adaptive filters that exhibit
good
environments[3], do not necessarily present good
tracking performance in non stationary environment.
For combination of algorithms we calculate the
convergence rate and EMSE in adaptive filters.

convergence properties in  stationary

The rest of the paper is organized as follows In the
next section II, we describe the affine combination of
two adaptive filters, In Section III, analytical
expressions for the optimum mixing parameter and
the optimum EMSE, Section IV will discuss about the

filters and two CMA equalizers. Section V is about
simulation results and discussion, some conclusion is
given in Section VL.

II. COMBINATION OF SUPERVISED ALGORITHMS

The linear combination of two supervised adaptive
filters is depicted in Fig.1, where the filter weights
are adjusted to minimize the mean-square error cost
function, obtaining at the output an estimate of the
given “desired signal” d(n). The output of the overall
filter is given by

y(n) = n(n)y; () + =My, (N) ooeeree (1)

Where 7(n)
are the

is the mixing parameter and yi(n), i=1,2
outputs of two transversal filters,
ie,y;(n)= u’ (n)w; (n—1) .The superscript T denotes
transposition, wi(n — 1), i =1, 2 represent the length-M
coefficient
component filters, and u(n) is their common input

column-vectors  characterizing the

regressor column-vector
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Figl. Linear combination of two supervised adaptive
filters

We focus on the affine combination of two
algorithms of the following general class

w; (n) = w; (n—=1) + p; (N)u(n)e; (n)

Where pi(n) is a step-size and ei(n) is the estimation
error. Many algorithms can be written, by proper
choices of pi(n) and ein). In supervised adaptive
filtering, a “desired signal” d (n) is available such

gg(m)=dn)—y;(n) (3)
And a linear regression model holds, i.e.
din)=u" (Mw,(N-1)+v(n) e, (4)

with wo(n— 1) being the time-variant optimal solution
and v(n) a zero-mean random process uncorrelated
with  u(n), denoted by
03 :E{Vz(n)} the sequences {u(n)} and {v(n)} are

whose variance is

assumed stationary and that v(n) is independent of
u(n) (not only uncorrelated). Defining the weight

error Vectors Wi (n) = w, (n) —w; (n) the a priori errors

e, (n=u’ (n)\;Vi (n-1)

An important consequence of this model is that v(k)

will be independent of all wi(j), wi(j) and esi(k) , i =
1,2j<k.

For any particular time instant k. considering the
combination of two LMS filters and the minimization
of the square

e?(n) =[d(n) - y(n)]* proposed the following gradient

overall instantaneous error

based algorithm
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n(n+1) =n(n)+ wpeMys (M =y, (M].......... (6)

To obtain a tradeoff between stability of this
recursion and the algorithm’s tracking capability in
the initial phase of adaptation, n (n) <=1

A) Combination of blind algorithms

It is a simplified communications system with a
combination of two blind equalizers. In this case, the
signal a (n), assumed ie. (independent and
identically distributed) and non Gaussian, is
transmitted through an unknown channel, whose
model is constituted by an FIR filter and additive
white Gaussian noise...

Algorithms based on the constant modulus cost
function define the “estimation error” as

& () =|r—yZ(y; (n)
Where r=E {a* (n)} / E {a? (n)}.

These assumptions were used in [10] obtain simple
linear models that capture the behavior of CMA close

to an optimum solution.

Thus, (7) was approximated by

ei(n)~y(n)eai(n)+pH(n ....(8)
Where

An)=3a2(nta)r ... 9)
and

L(n)=m(nta)ad(nta) ceeeen(10)

The variable f (n) is identically zero for constant-
modulus constellations, so the variability in the
modulus of a (1) (as measured by f (1)) plays the role
of measurement noise for constant-modulus based
algorithms. Model [5] was proposed to study convex
combinations of constant-modulus based algorithms
and extended to obtain explicit stability conditions
for CMA to update the mixing parameter in order to
combine two CMA equalizers, we could use a
gradient

to minimize the instantaneous

- 2
Jcm(n)z[r—yz(n)] as
considered in the convex combination... Thus, we

rule

constant-modulus cost
propose a stochastic gradient algorithm to minimize

the instantaneous square decision

error 3 da(n)= e§ (n),
Where

AA A
eq(W=a(n—74)-y(n) anda(n-ry)
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The estimate of the transmitted signal at the output
of the decision device. This results in the following
update equation

n(n+2) =n()+ wye MM -y, (M] ...(11)
when both

component filters are far from convergence. Assume
ei(n) ~ea(n)

In the presence of noise and/or

B) A common formulation

Comparing (8) to (5), we can write the following
general expression
ei(n)=k(n)esi(n)+pn) ,i=1,2..
Where ¥ = 1 and ¢ (n) = v (n) for a supervised
algorithm or « (n) = y (n) and ¢ (n) = f (n) for a blind
one. In both cases E {n(n)} = 0. This model also holds
for the overall scheme, i.e.

e (n)=x(n)ea(n)+n(n) 13)

where e(n) represents the error of the combined
filter: e(n)=d(n)-y(n) for supervised algorithms or e(n)
= [r - y(m]y(n) for
algorithms, and ea(n) is the a priori error of the
overall scheme. It should be noticed that (12) and (13)
are approximations in the blind case. For the sake of
simplicity, we use the equality sign here and in the
expressions derived from (12) and (13).

constant-modulus-based

The supervised LMS and NLMS algorithms and the
blind CMA employ the step-sizes pi(n)and the
estimation errors ei(n),where Q. is a regularization
factor and k. k represents the Euclidean norm. The
models for the errors ei(n) of these algorithms are also
shown in this table for convenient reference. The
step-size interval which ensures the convergence and
stability is different for each algorithm. For the LMS
and NLMS algorithms, the step-size intervals are
well-known in the literature whereas for CMA, the
derivation of this interval was shown recently.

Using equation model (5) in the supervised case, and
the fact that ed(n) ~edn) in the blind case, we can
write a general expression for updating the mixing
parameter, i.e,,

n(n+1)=n(n)+pmes(n)[yr1(n)y2(n)]......... (14)
Where
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eg(n) =edn) + b(n)

And b (n) = v (n) for the combination of supervised
algorithms or b (n) = 0 for the combination of
constant-modulus-based algorithms. In both cases, 1
(n) is constrained to be less than or equal to 1 for all
n. Algorithm (14) is denoted here by 1n-LMS.

III. THE OPTIMUM MIXING PARAMETER AND EMSE
An analytical expression for the optimum mixing
parameter no(n) can be obtained equating to zero the
expected value of the gradient used to update n(n) in
(14), i.e., The error eg(n) in (16) can be rewritten as a
function of the a priori errors ea,i(n),

i =1, 2, as follows. Using (1), (12), and (13), the a
priori error eq (1) of the overall scheme can be written
as

e, (n) =n(n)e,1 (n) +[1-n(n)]e,, ()
=€42 (n)+ n(n)[ea,l (n) - €a,2 (21

Replacing (17) in (15), and remarking that
y1(n)—y2(n)=ea1(n)-e2(n) and

E{e;?_ (n)—ez1(n)e,, (n)}
-E {’70 (n)[ea,z (n) - ea,l (n)]2 }
+Ef(n)le, 2 () —e,: (M]}=0

..(18)

In the blind case, b(n) = 0 and in the supervised case,
b(n) = v(n), which is assumed independent of esi(n), i
= 1, 2. Hence, in both cases the third term on the
L.H.S. of (18) is equal to zero.

To proceed, we remark that the EMSE of the
component filters and the cross-EMSE can be
calculated (18), respectively as

gii(n) - E{e;i (n)}, i=12 and

................. (19)
G1(M) = Efeas (M ()}

............ (20)
Introducing the differences
Adii(n) = Gi(n) - §iz(n), i=1,2, (21)
And using (19)-(21) in (18), we arrive at

Agp, ()
17, (N) renthenm (22)

A similar expression was also obtained for the
convex combination of two LMS filters at the steady-
state. We should notice that (22) is more general: it
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holds for all #n > 0 (not only at the steady-state) and
the mixing parameter is not restricted to the interval
[0, 1]. Defining the EMSE of the overall combined
scheme as

¢(n)=Efe?(n)}

We now obtain an analytical expression for its
optimum value. By squaring both sides of (17) with 7,
(n) =10 (n) and taking expectations, we arrive at

EfeZ(n)} = 12 (n) E{fe2a1(n)}
+[1- 10 ()2 E{ e%a2(n)
+2 no(n)[1-no(n)JE{ea1(n)es2(n)}
coen(24)
Using (19)-(22) in (24), we obtain
Go(n) = §2(n) - 1o (n)A22(n)

After some algebraic manipulations, (25) can be
rewritten as

Ag11(N)Ag,,(n)
AG11(N) +Ag,(N)

So(N) =g1,(n)+

This expression was obtained for the convex
combination of two LMS filters at the steady state,
but again it also holds for all n > 0.As already
mentioned in (8) (22) (26) hold for the combination of
any two algorithms that satisfy (12).The values of
Adi(n) i = 1,2 however do depend on the actual
algorithms that are being combined .Thus provided
Gi(n) i = 1,2 are available,(22)
and (26) can applied to the affine combination of
different algorithms ,including combinations of
algorithms of different families.

approximations for

IV. STEADY-STATE ANALYSIS OF THE OPTIMUM
COMBINER

In this section, the optimum mixing parameter and
the optimum EMSE of the combination, given
respectively by expressions (22) and (26), are
particularized for the combination of two LMS filters,
two NLMS filters, and two CMA equalizers in
steady-state for stationary and non stationary
environments. We assume that in a non stationary
environment, the variation in the optimal solution
wo follows a random-walk model, that is,

wo(n) =we(n-1)+qn)  ......... (27)
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In this model, g (1) is an iid (independent and
identically distributed). vector with positive-definite
autocorrelation matrix Q=E{g(n)q"(n)} independent
of the initial conditions {wo(-1),w(-1),7(-1)} and of
{u(l)} for all I [4]. In supervised filtering, g (n) is also
assumed independent of the desired response {d (1)}
for all I < n. In blind equalization, w. (1) represents
the zero-forcing solution and ¢ (1) models the
channel variation. The analyses.

A) Transient Analysis of Realizable Schemes

In this section, we take into account the adaptation of
N (n) in the analysis by squaring both sides of (17)
and taking expectations, we Obtain

El2(n)}=Ef2, (M) [+ Edr? (Mleas () —eq (M1}
+2Ef(M)ea s (Meay () —e2, (]

To proceed, we assume that:

Al. The adaptation of n(n) is slow so that the
correlation between it and esi(n)esi(n)ij = 1,2
can be disregarded.

This assumption follows from observations:
simulations show that n (1) converges slowly
compared to variations in the input u (n) and thus to
variations on the a-priori errors. Using Al, (19)-(21)
and (23), we can rewrite (29) as

¢(N) = 25 (M) + Efp® (0) jr(n) — 2E 7 (n) g ()

Where we define

= Efy, () - v> (P = Acyy (M) + Ao (1)

To estimate the EMSE of the combination for all n >0
using (30), analytical expressions for gi(n), i = 1,2,
E{n(n)}, and E{#A(n)} should be obtained. It is
common in the literature to evaluate the EMSE as

A
¢ (W =Efea; (e, ; M}~ Tr(RS; (1-1) ....(32)
V. SIMULATION RESULTS

To verify the transient analysis in the supervised
case, we consider the identification of a time
invariant system. The optimum solution is formed
with M = 7 independent random values between -1
and 1, and is given by w. = [+0.90 -0.54 -0.03 +0.78
+0.52 —-0.09].We assume white Gaussian input with
variance 1/M so that Tr(R) = 1, and an average of 500
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runs. Moreover, i.i.d. noise v (n) with variance o2 v
=0.01 is added to form the desired signal.

Fig. 2 shows the results of the EMSE and the mixing
parameter for the affine combination of two LMS
filters in the same situations considered in Fig. 3 and
4 in which the mixing parameter is updated with the
N-LMS algorithm, where pn = 3,. Similarly, with pn =
0.1, the analysis can predict that the combination is
not able to switch to the slow filter, We should notice
that, due to the constraint imposed in the 1n-LMS
algorithm (n(n) <1),.

plot for un = 0.1

0 =7 ; :
ul-LMs

u2-LMS
combination
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. \l
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35 \
-40 ‘ : :
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Fig. 2. Affine combination of two signals.
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Fig. 4. Convex combination of two LMS filters at the
steady state, but it holds for all n > 0.

VI. CONCLUSIONS

We proposed transient and steady-state analyses for
the EMSE and the mixing parameter of the affine
combination, based on the theoretical EMSE and
cross-EMSE of the component filters and on the
adaptation of the mixing parameter. This states the
application to different combinations of algorithms
of LMS, NLMS and CMA, considering white or
colored inputs and stationary or non stationary
environments. Good agreement between the analysis
and the simulations was always observed. Moreover,
we proposed and
algorithms for updating the mixing parameter. The

analyzed two normalized
theoretical models can predict situations in which
these algorithms can achieve a good performance
results.
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