

International Journal of Research and Applications

ISSN (online): 2349-0020

http://www.ijraonline.com/

Research Article

Multiuser Detection for DS-CDMA Systems over Generalized-K Fading Channels using Particle Swarm Optimization

Srinivasa Rao Vempati 1, Habibulla Khan 2, Vinay Kumar Pamula 3 and Dr. Anil Kumar Tipparti 4

Corresponding Author: icetet2014@yahoo.com

DOI:

http://dx.doi.org/ 10.17812/IJRA.1.3(24)2014

Manuscript:

Received: 15th Sep, 2014 Accepted: 22nd Sep, 2014 Published: 30th Sep, 2014

ABSTRACT

In direct sequence-code division multiple accesses systems (DS-CDMA), the signals are transmitted over multipath channels that introduce fading. Multipath fading along with multiple access interference and inter-

symbol interference degrades the system performance. Further, simultaneous presence of multipath fading and shadowing leads to worsening of wireless channels. Moreover, experimental results have confirmed the presence of impulsive noise in wireless mobile communication channels. This paper presents a robust multiuser detection technique for DS-CDMA systems over generalized-K (GK) fading channels in the presence of impulsive noise. Robust Mdecor relating detector to demodulate binary phase shift keying (BPSK) signals is implemented by using the particle swarm optimization (PSO) algorithm. The PSO algorithm is used to obtain optimum M-estimates by minimizing an objective function, which is a sum of less rapidly increasing function of residuals. Simulation results are provided to show the evolutionary behavior and efficacy of the proposed M-estimator in comparison with linear decor relating detector, the Huber and the Hampel estimator based detectors.

Keywords: CDMA, influence function, maximal ratio combiner, *M*-estimator, multiuser detection, Nakagami fading, particle swarm optimization.

IJRA - Year of 2014 Transactions:

Month: July-September

Volume – 1, Issue – 3, Page No's: 110-114

Subject Stream: Electronics

Paper Communication: Through Conference of ICETET-2014

Paper Reference Id: IJRA-2014: 1(3)110-114

¹KITS for Women, Kodad, India, ²KL University, Vaddeswaram, India

³ JNTU Kakinada, Andhra Pradesh, India, ⁴SR Engineering College, Warangal, India

ISSN (online): 2349-0020

ELECTRONICS

RESEARCH ARTICLE

Multiuser Detection for DS-CDMA Systems over Generalized-K Fading Channels using Particle Swarm Optimization

Srinivasa Rao Vempati ¹, Habibulla Khan ², Vinay Kumar Pamula ³, Dr. Anil Kumar Tipparti ⁴

¹ KITS for Women, Kodad, India, ² KL University, Vaddeswaram, India

³ JNTU Kakinada, Andhra Pradesh, India, ⁴ SR Engineering College, Warangal, India

¹ pamulavk@ieee.org, ² habibulla@rediffmail.com, ³ pamulavk@yahoo.com, ⁴ tvakumar2000@yahoo.co.in

ABSTRACT

In direct sequence-code division multiple accesses systems (DS-CDMA), the signals are transmitted over multipath channels that introduce fading. Multipath fading along with multiple access interference and intersymbol interference degrades the system performance. Further, simultaneous presence of multipath fading and shadowing leads to worsening of wireless channels. Moreover, experimental results have confirmed the presence of impulsive noise in wireless mobile communication channels. This paper presents a robust multiuser detection technique for DS-CDMA systems over generalized-*K* (GK) fading channels in the presence of impulsive noise. Robust *M*-decor relating detector to demodulate binary phase shift keying (BPSK) signals is implemented by using the particle swarm optimization (PSO) algorithm. The PSO algorithm is used to obtain optimum *M*-estimates by minimizing an objective function, which is a sum of less rapidly increasing function of residuals. Simulation results are provided to show the evolutionary behavior and efficacy of the proposed *M*-estimator in comparison with linear decor relating detector, the Huber and the Hampel estimator based detectors.

Keywords: CDMA, influence function, maximal ratio combiner, *M*-estimator, multiuser detection, Nakagami fading, particle swarm optimization.

I. INTRODUCTION

Recent research has explored the potential benefits of evolutionary optimization algorithms and their application to multiuser detection (MUD) for directsequence code division multiple access (DS-CDMA) systems [1]-[4]. An adaptive robust MUD technique for CDMA by implementing Huber's M-estimator using genetic algorithm (GA) is presented in [3] and shown that it is robust against heavy-tailed impulsive noise. Recently, particle swarm optimization (PSO) algorithm has been applied for the MUD [4] to detect received data bit by optimizing an objective function. The generalized-K (GK) fading channel has been received considerable attention as it can provide a good fit to different fading environments such as Nakagami-m and RayleighLognormal [5]. Experimental results have confirmed the presence of heavy-tailed impulsive noise in outdoor mobile communication channels, in radar and sonar systems and in indoor wireless communication channels [6].

Hence, this paper presents the implementation and performance analysis of proposed based M-estimator [7], [10], which performs well in the heavy-tailed impulsive noise, using PSO algorithm.

II. SYSTEM MODEL

Consider an L-user synchronous CDMA system, where each user transmits information by modulating a PN sequence over a single-path GK fading channel. The received signal over one symbol duration can be modeled as [8]

$$r(t) = \Re \left\{ \sum_{l=1}^{L} \sum_{i=0}^{M-1} b_l(i) \alpha_l(t) e^{j\phi(t)} s_l(t - iT_s - \tau_l) \right\} + n(t)$$
 (1)

where $\Re\{\cdot\}$ denotes the real part, M is the number of data symbols per user in the data frame of interest, T_s is the symbol interval, $\alpha_l(t)$ is the time-varying fading gain of the lth user's channel, $\phi(t)$ is the time-varying phase of the lth user's channel, $b_l(i)$ is the ith bit of the lth user, $s_l(t)$ is the normalized signaling waveform of the lth user and n(t) is assumed as a zero-mean complex two-term non-Gaussian noise [9].

For synchronous case (i.e., $\tau_1 = \tau_2 = ... = \tau_l = 0$), assuming that the fading process for each user varies at a slower rate that the magnitude and phase can taken to be constant over the duration of a bit, the received signal can be expressed in matrix notation as [9]

$$r(i) = A\theta(i) + w(i)$$
 (2)

Where $\underline{r}(i) \square \left[r_1(i),...,r_N(i) \right]^T$,

$$\underline{w}(i) \square \left[w_1(i),...,w_N(i) \right]^T$$
 and

$$\underline{\boldsymbol{\theta}}(i) \Box \frac{1}{\sqrt{N}} \Big[\boldsymbol{b}_1(i) \boldsymbol{g}_1(i), ..., \boldsymbol{b}_L(i) \boldsymbol{g}_L(i) \Big]^T$$
. Here, $\boldsymbol{w}_n(i)$ is a

sequence of independent and identically distributed (i.i.d.) complex random variables whose in-phase and quadrature components are independent non-Gaussian random variables, $\mathbf{g}_l(i)$ is the l^{th} channel fading coefficient and

$$\underline{A} \square [\underline{a}_1, \underline{a}_2, ..., \underline{a}_L] \text{With } \underline{a}_l \square [a_1^l, a_2^l, ..., a_N^l].$$

It is assumed that the signal of each user arrives at the receiver through an independent, single-path fading channel. For the shadowed fading channels, $\alpha_l(i)$ are i.i.d. random variables with GK distribution given by [12]

$$p_{\alpha}(\alpha_{l}) = \frac{2}{\Gamma(m)\Gamma(\mu)} \left(\sqrt{\frac{m\mu}{\Omega_{o}}} \right)^{m+\mu} \alpha_{l}^{\frac{m+\mu}{2}-1} K_{m-\mu} \left(2\sqrt{\frac{m\mu}{\Omega_{o}}} \alpha_{l} \right)$$
(3)

Where, m is the Nakagami fading parameter that determines the severity of the fading, μ represents the shadowing levels, Ω_0 is the average SNR in a

shadowed fading channel, $K_{\xi}(\cdot)$ is the modified Bessel function and $\Gamma(\cdot)$ is the Gamma function [9] In M-estimates, unknown parameters $\underline{\theta}_1,\underline{\theta}_2,...\underline{\theta}_L$ are solved by minimizing a sum of function, $\rho(\cdot)$ of the residuals [9]

$$\underline{\mathbf{\theta}} = F\left(\theta_{l}(i)\right) = \underset{\underline{\mathbf{\theta}} \in C^{L}}{\operatorname{arg min}} \sum_{n=1}^{N} \left\{ \rho \left[\Re\left(\mathbf{r}_{n}(i) - \sum_{l=1}^{L} [\underline{A}]_{nl} \theta_{l}(i)\right) \right] + \rho \left[\Im\left(\mathbf{r}_{n}(i) - \sum_{l=1}^{L} [\underline{A}]_{nl} \theta_{l}(i)\right) \right] \right\}$$

$$(4)$$

where $\rho(\cdot)$ represents a specific penalty function that is symmetric positive-definite with a unique minimum at zero, and is chosen to be less increasing than square, $r_n(i)$ and $\theta_l(i)$ are the n^{th} and l^{th} elements of the vectors $\underline{r}(i)$ and $\underline{\theta}(i)$ respectively, $[\underline{A}]_{nl}$ is the nl^{th} element of the matrix \underline{A} , and $\Im(\cdot)$ denotes imaginary part. This paper considers the modified-Hampel based M-estimator to implement an M-decorrelating detector with penalty function [7]

$$\rho_{MH}(x) = \begin{cases} \frac{x^2}{2} & for |x| \le a \\ \frac{a^2}{2} - a|x| & for |a| \le b \\ -\frac{ab}{2} \exp\left(1 - \frac{|x|^2}{b^2}\right) + d & for |x| > b \end{cases}$$
 (5)

Where a, b and d are constants that depend on the robustness of the estimator [7].

III. PSO BASED M-DECORRELATING DETECTOR

PSO is a swarm intelligence method for global optimization modeled after the social behavior of bird flocking and fish schooling [4]. In PSO algorithm the solution search is conducted using a population of individual particles, where each particle represents a candidate solution to the optimization problem (3). Each particle keeps track of the position of its individual best solution (called as pbest), $\mathbf{p}_d^{best} = [p_{d_1}^{best},...,p_{d_L}^{best}]$ and the overall global

IJRA | 2014 | Volume 1 | Issue 3

best solution (called as gbest), $\mathbf{g}^{best} = [g_1^{best}, ..., g_T^{best}]$ among p bests of all the represented in population the as $\mathbf{p}_d^{it} = [p_{d_1}^{it},...,p_{d_L}^{it}]$, where \mathbf{p}_d^{it} is the dth particle in the itth iteration, $d = 1, 2, ..., N_p$, it = 1, 2, ..., N_{it} , N_p is the number of particles, and Nit is the maximum number of iterations. Corresponding to each position, the particle velocity is $v_d^{it} = [v_{d_1}^{it}, ..., v_{d_t}^{it}][2]$, [4]. The steps involved in the PSO based M-decorrelating detector's implementation are [2], [3], [4]:

Step 1: Compute the decorrelating detector output, $\underline{\mathbf{\theta}}^0 = \underline{R}^{-1}\underline{A}^T\underline{r} \; . \quad \text{Here,} \quad \underline{R}\left(\Box\underline{A}^T\underline{A}/N\right) \quad \text{is} \quad \text{the} \\ \text{normalized cross-correlation matrix of signature} \\ \text{waveforms of all users.}$

Step 2: Initialization: The output of decorrelating detector is taken as input first particle $\mathbf{d}_1^0 = \underline{\mathbf{g}}_1^0$.

Step 3: Fitness evaluation: The objective function (3) is used to find the fitness vector by substituting residuals. Local best position \mathbf{p}_d^{best} is recorded by looking at the history of each particle and the particle with lowest fitness is taken as \mathbf{g}^{best} of the population.

Step 4: Update the inertia weight by using the decrement function $w^{it} = \beta w^{it-1}$, where $\beta < 1$ is the decrement constant.

Step 5: Update the particle velocity by using the relations

$$\begin{aligned} & & & & private thinking of the particle \\ v_d^{it+1} &= w^{it+1} \times v_d^{it} + & & c_1 \times \mu_1 \times \left(\mathbf{p}_d^{best} - \mathbf{p}_d^{it}\right) \\ & & + & c_2 \times \mu_2 \times \left(\mathbf{g}^{best} - \mathbf{p}_d^{it}\right) \\ & & & & social thinking of the particle \end{aligned}$$

(6)
$$\mathbf{p}_d^{it+1} = \mathbf{p}_d^{it} + v_d^{it+1} \qquad (7)$$

Where c_1 and c_2 are the acceleration constants representing the weighting of the stochastic acceleration terms to pull the particle to pbest and gbest. μ_1 and μ_2 are random numbers that are uniformly distributed between 0 and 1. Particle position is updated according to (6). Particle velocity

is limited by the maximum velocity $\mathbf{v}^{\max} = [v_1^{\max},...,v_2^{\max}]$.

Step 6: The individual best particle position is updated by following rule: $if \ F\left(\mathbf{p}_{d}^{it}\right) \leq F\left(\mathbf{p}_{d}^{best}\right) \\ then \ \mathbf{p}_{d}^{best} = \mathbf{p}_{d}^{it}$

Step 7: \mathbf{g}^{best} is the global best particle position among all the individual best particle positions \mathbf{p}_d^{it} at the itth iteration such that $F\left(\mathbf{g}^{best}\right) \leq F\left(\mathbf{p}_d^{it}\right)$.

Step 8: The above steps are repeated until the maximum number of iterations has been reached.

The computed \mathbf{g}^{best} value is used to evaluate average probability of error of BPSK demodulator, over GK fading channel, by an approximate expression given by

$$\overline{P_e^1} = F \cdot \frac{1}{2} \alpha^{-0.5l\beta^{-1}} \Gamma\left(\frac{1+d+l}{2}\right) \Gamma\left(\frac{1-d+l}{2}\right) \\ \cdot \exp\left(\frac{\beta^2}{8\alpha}\right) W_{-0.5l,d} \left(\frac{\beta^2}{4\alpha}\right)$$
 (8)

where m is the Nakagami fading parameter that determines the severity of the fading, μ represents the shadowing levels, Ω_0 is the average SNR in a

shadowed fading channel $F = \frac{2}{\Gamma(m)\Gamma(\mu)} \left(\sqrt{\frac{m\mu}{\Omega_0}} \right)^{m+\mu}$,

$$d = m - \mu$$
, $l = \frac{m + \mu}{2} - 1$, $\alpha = \frac{1}{v^2 \left[R^{-1} \right]_{11}}$ and

$$\beta = 2\sqrt{\frac{m\mu}{\Omega_0}}$$
 and $W_{\lambda,\gamma}(\cdot)$ is the Whittaker function [13].

TABLE I. PSO PARAMETERS USED FOR SIMULATION

Parameter	Value
Number of particles, N _p	20
Maximum number of iterations, Nit	100
Acceleration constants c_1 and c_2	2
Maximum velocity of the particles $\left v_l^{\text{max}}\right $ for all users	2
Initial inertial weight, w	1
Decrement constant, β	0.99

IV. SIMULATION RESULTS

In this section, the performance of M-decorrelating detector is presented by computing (7) for for

different values of fading parameters and shadowing levels with least-squares, Huber, Hampel and modified-Hampel penalty functions. The PSO parameters used for simulation are presented in Table I. The value of \mathbf{g}^{best} is computed for specified penalty functions and is used to compute the average probability of error (7) of BPSK signals. In Fig. 1 and Fig. 2, the average probability of error versus the signal-to-noise ratio (SNR) corresponding to the user 1 under perfect power control of a synchronous DS-CDMA system with six users (L = 6) and processing gain, N = 31 is plotted for moderate impulsiveness (ε = 0.01) of noise, m = 1, μ = 1. Similarly, the average probability of error is plotted in Fig. 3 and Fig. 4 with highly impulsive noise (ε = 0.1) and m = 1, μ = 1. These simulation results show that the decorrelating detector with proposed estimator based detector performs well even in highly impulsive noise when compared to least-squares, Huber and Hampel estimator based detectors.

V. CONCLUDING REMARKS

Multiuser detection technique for DS-CDMA systems over GK fading channels using PSO was presented in this paper. An objective function, which is a sum of less rapidly increasing function of residuals, was used to obtain optimum estimates. An M-decorrelator is implemented with different influence functions. Simulation results shows that the proposed M-decorrelator performs better when compared to least-squares, Huber and Hampel estimator based detectors.

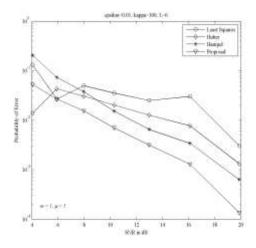


Fig.1 Average probability of error versus SNR for user 1 for linear multiuser detector, minimax detector with Huber, Hampel and proposed M-estimator in synchronous CDMA channel with impulse noise, N = 31, ε = 0.01, m = 1, μ = 1.

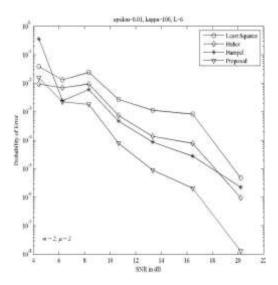


Fig.2 Average probability of error versus SNR for user 1 for linear multiuser detector, minimax detector with Huber, Hampel and proposed M-estimator in synchronous CDMA channel with impulse noise, N = 31, ε = 0.01, m = 2, μ = 2.

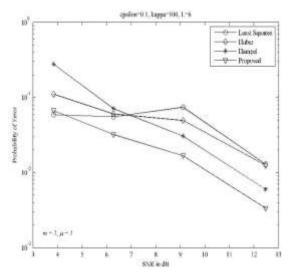


Fig.3 Average probability of error versus SNR for user 1 for linear multiuser detector, minimax detector with Huber, Hampel and proposed M-estimator in synchronous CDMA channel with impulse noise, N = 31, $\varepsilon = 0.1$, m = 1, $\mu = 1$.

IJRA | 2014 | Volume 1 | Issue 3

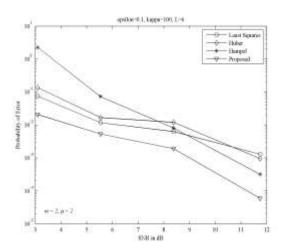


Fig.4 Average probability of error versus SNR for user 1 for linear multiuser detector, minimax detector with Huber, Hampel and proposed M-estimator in synchronous CDMA channel with impulse noise, N = 31, $\varepsilon = 0.1$, m = 2, $\mu = 2$.

REFERENCES

- [1] Z. Guo, Y. Xiao, M. H. Lee, "Multiuser Detection Based on Particle Swarm Optimation Algorithm," Proc. of IEEE International Symposium on Circuits and System. vol., no., pp.2582-2585, 27-30 May 2007.
- [2] J-C. Chang, "Robust blind multiuser detection based on PSO algorithm in the mismatch environment of receiver spreading codes," Comput Electr Eng, 2012, http://dx.doi.org/10.1016/j.compeleceng.2012.08. 002.
- [3] X. Wu, T.C. Chuah, B.S. Sharif and O.R. Hinton, "Adaptive robust detection for CDMA using a gnenetic algorithm," IEE Proc.-Commun., vol. 150, no. 6, pp. 437-444, Dec. 2003.
- [4] K.K. Soo, Y.M. Siu, W.S. Chan, L. Yang and R.S. Chen, "Particle-Swarm-Optimization-Based Multiuser Detector for CDMA Communications," IEEE Trans., Veh. Technol., vol.56, no.5, pp.3006-3013, Sep. 2007.
- [5] P.S. Bithas et. al., "On the performance analysis of digital communications over generalized-K

- fading channels," IEEE Commun., Lett. vol. 10, no. 5, pp.353-355, 26-29, May 2006.
- [6] A.M. Zoubir, V. Koivunen, Y. Chakhchoukh, M. Muma, "Robust Estimation in Signal Processing: A Tutorial-Style Treatment of Fundamental Concepts," IEEE Signal Processing Magazine, vol.29, no.4, pp.61-80, Jul. 2012.
- [7] T. Anil Kumar, and K. Deerga Rao, "Improved Robust techniques for multiuser detection in non-Gaussian channels", Circuits Systems and Signal Processing J., vol. 25, no. 4, 2006.
- [8] H. V. Poor, and M. Tanda, "Multiuser Detection in flat fading non-Gaussian channels," IEEE Trans. Commun., vol. 50, no. 11, pp. 1769-1777, Nov. 2002.
- [9] X. Wang and H. V. Poor, "Robust multiuser detection in non-Gaussian channels," IEEE Trans. Signal Processing, vol.47, no.2, pp.289-305, 1999.
- [10] T. Anil Kumar, K. Deerga Rao, "A New Mestimator based robust multiuser detection in flat-fading non-Gaussian channels", IEEE Trans. Commun., vol. 57, no. 7, pp. 1908-1913, Jul. 2009.
- [11] P. Vinay Kumar, V. Srinivasa Rao, Habibulla Khan and T. Anil Kumar, "Robust blind multiuser detection in DS-CDMA systems over Nakagami-m fading channels with impulsive noise including MRC receive diversity," Proc. IEEE 6th International Conference on Signal Processing and Communication Systems, Gold Coast, Australia, 12-14 Dec. 2012.
- [12] P. M. Shankar, "Maximal Ratio Combining (MRC) in Shadowed Fading Channels in Presence of Shadowed Fading Cochannel Interference(CCI)," Wireless Pers Commun J., vol. 68, no. 1, pp.15-25, 2013.
- [13] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, Boston, MA, 2007.

IJRA | 2014 | Volume 1 | Issue 3