

International Journal of Research and Applications

ISSN (online): 2349-0020 ISSN (print): 2394-4544 http://www.ijraonline.com/

DRIVEN BY

Research Article

Friction Stir welding on ZE41 Magnesium Alloys

D. Sammaiah¹ D. Srikanth Rao² and N. Sudheer kumar³

Corresponding Author:

tsitsmyheartbeat@gmail.com

DOI:

http://dx.doi.org/ 10.17812/IJRA.2.5(41)2015

Manuscript:

Received: 2nd Jan, 2015 Accepted: 15th Feb, 2015 Published: 19th Mar, 2015

Publisher:

Global Science Publishing

Group, USA

http://www.globalsciencepg.org/

ABSTRACT

Friction Stir Welding (FSW) is a solid state welding process in which the heat for welding is produced by the relative motion between the tool and the two interfaces being joined. This method relies on the direct conversion of mechanical energy into thermal energy to form the weld without the application of heat energy from any other source. The rotational speed of the tool, the axial pressure of the tool and the welding time are the principle variables that are controlled in order to provide the necessary combination of heat and pressure to form the weld. [2] These parameters are adjusted so that the interface is heated into the below recrystallizing temperature range where welding can take place. During the last stage of welding process, atomic diffusion occurs while the interfaces are in contact, allowing metallurgical bond to form between the two materials. The functional behavior of weldments is substantially determined by the nature of the weld strength characterized by the mechanical and metallurgical behavior.

¹ M. Tech Pursing, ² Associate professor and ³ Assistant Professor

123 Department of Mechanical Engineering,

SR Engineering College (Autonomous) Warangal-506371

IJRA - Year of 2015 Transactions:

Month: January - March

Volume - 2, Issue - 5, Page No's:209-214

Subject Stream: Mechanical

Paper Communication: Author Direct

Paper Reference Id: IJRA-2015: 2(5)209-214