

International Journal of Research and Applications

ISSN (online): 2349-0020 ISSN (print): 2394-4544 http://www.ijraonline.com/

Research Article

Synthesis and characterization of Titanium dioxide nanoparticles and nanocomposites with CdS

Sumalatha Donthula¹ and Jagadeesh Kumar Ega²

Corresponding Author:

jkjadeeshkumare@gmail.com

DOI:

http://dx.doi.org/ 10.17812/IJRA.3.11(81)2016

Manuscript:

Received: 19th July, 2016 Accepted: 16th Aug, 2016 Published: 30th Sep, 2016

Publisher:

Global Science Publishing Group, USA

http://www.globalsciencepg.org/

ABSTRACT

Transition metal oxides possess attracting fundamental and technological properties due to the influence of many

factors such as the presence of d-electrons, crystalline structure, oxygen defects and doped impurities. In view of this work, abundant efforts have been attempted to improve charge separation by modifying the surface or bulk properties of TiO2, such as doping, deposition of metals, size reduction and coupling of two semiconductors and thereby improving the photo catalytic activity. Nanocrystal line TiO2 has unique physico-chemical, optical and electronic properties, excellent pigmentary properties, high ultraviolet absorption and high stability which allow it to be used in biomedical coatings, electro ceramics, self-cleaning surface coating and building materials. Titanium dioxide nanoparticles and nanocomposites elemental studies were carried out using Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive Xray Spectroscopy (or EDS). Diffraction studies were carried out using X-Ray Diffraction (XRD) Spectroscopy. Microscopic studies by Scanning Electron Microscope performed Transmission Electron Microscope. The TGA curve revealed high thermal stability of the synthesized nanoparticles, absence of any impurity or intermediate complex and high melting point.

Keywords: Titanium dioxide, Nano composites, FTIR, EDS, XRD and TGA

IJRA - Year of 2016 Transactions:

Month: July-September

Volume – 3, Issue – 11, Page No's:487-493

Subject Stream: Chemistry

Paper Communication: Author Direct

Paper Reference Id: IJRA-2016: 3(11)487-493

eISSN: 2349 - 0020 pISSN: 2394 - 4544 www.ijraonline.com

CHEMISTRY

RESEARCH ARTICLE

Synthesis and characterization of Titanium dioxide nanoparticles and nanocomposites with CdS

Sumalatha Donthula¹ and Jagadeesh Kumar Ega²

ABSTRACT

Transition metal oxides possess attracting fundamental and technological properties due to the influence of many factors such as the presence of d-electrons, crystalline structure, oxygen defects and doped impurities. In view of this work, abundant efforts have been attempted to improve charge separation by modifying the surface or bulk properties of TiO₂, such as doping, deposition of metals, size reduction and coupling of two semiconductors and thereby improving the photo catalytic activity. Nanocrystalline TiO₂ has unique physico-chemical, optical and electronic properties, excellent pigmentary properties, high ultraviolet absorption and high stability which allow it to be used in biomedical coatings, electro ceramics, self-cleaning surface coating and building materials. Titanium dioxide nanoparticles and nanocomposites elemental studies were carried out using Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive X-ray Spectroscopy (or EDS). Diffraction studies were carried out using X-Ray Diffraction (XRD) Spectroscopy. Microscopic studies were performed by Scanning Electron Microscope and Transmission Electron Microscope. The TGA curve revealed high thermal stability of the synthesized nanoparticles, absence of any impurity or intermediate complex and high melting point.

Keywords: Titanium dioxide, Nano composites, FTIR, EDS, XRD and TGA.

1. INTRODUCTION

Titanium dioxide (TiO₂) belongs to one of these prototypes. Titanium dioxide itself has no delectron, but the number of d-electron can be controlled by doping1. In addition to the wide bandgap, TiO2 exhibits many other interesting properties, such as transparency to visible light, high refractive index, and low absorption coefficient². It is inexpensive, chemically stable and non-toxic. TiO2 has been used since ancient times as white pigments. It possesses white color because it has no absorption in the visible region³. The importance of TiO2 as photocatalyst for splitting of water was first highlighted by Honda and Fujishima^{4,5}, since then due to its unique electronic, optoelectronic, Photo catalytic Water Decomposition, Cleaning Building Materials and modified Sol-Gel Process 6-11. TiO2, is an important IV-VI group semiconductor (SC 12, and can crystallize in three polymorphic forms with Photo catalytic Property of Bicrystalline TiO2/Rectorite Composites. 13, 14. It gives a representative diagram of structures of different TiO2 phases. In its pure form TiO2 is an n-type semiconductor with indirect band gaps of 3.2eV (387nm) for anatase, 3.02eV (410nm) for rutile and 3.25eV (381nm) for brookite¹⁵, between the filled oxygen 2p valence band (VB) and titanium 3d states at the bottom of the conduction band (CB). All these crystalline structures of TiO2, consist of deformed TiO6 octahedron, connected differently by corners and edges. Among these forms, anatase and rutile are most common whereas brookite, is uncommon and unstable¹⁶. Rutile is the most stable form, whereas anatase and brookite are metastable forms and can readily transform to rutile on heating¹⁷. The temperature at which anatase to rutile transformation takes place varies from 400°C to 1000°C depending on concentration of

impurities in the crystals or annealing atmosphere¹⁸.

White pigment in paints, food coloring, toothpastes, cosmetics19-27, in environmental friendly method for air purification²⁸, flexible dyesensitized solar cells²⁹, humidity sensors³⁰, electro chromic devices, photovoltaic fuel cells, and above all as photo catalyst for air and water purification also for water splitting to produce H₂.Diffraction (XRD) Spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). TiO2 NP absorbs light at <385nm leading to excitation of electrons (e-) from the valence band to the conduction band, leaving behind a positively charged vacancy called a hole (h+). The hole by itself is a very powerful oxidizing agent and may lead to the generation of hydroxyl radicals in presence of water and molecular oxygen or can directly oxidize adsorbed species on NP surface. TiO2 has an advantage of having a capability to perform function using sunlight as an energy source. These photo induced charges have very short lifetime due to charge recombination, releasing the absorbed light energy as heat, with no chemical effect. Therefore, it is important to prevent electron-hole recombination in order to improve the efficiency and efficacy of TiO₂. Also TiO₂ can only effectively absorb in UV region of the solar spectrum which makes up only about 5% of the total solar energy that falls on the earth's surface, thus limiting its use.

2. MATERIALS AND METHODS

Synthetic technique for TiO₂ nanoparticles involved controlled precipitation of nanoparticles from precursors dissolved in a solution. Here, a simple method was proposed for the synthesis of TiO₂ nanoparticles from the reductive hydrolysis of Titanium Tetra Isopropoxide (TTIP) in methanol at ambient temperature and pressure without calcinations. A series of TiO2 NP (Tma, Tmb, Tmc, Tmd and Tme) was synthesized by varying the concentration of TTIP and keeping the amount of methanol (24.44M) constant at 100mL. The concentration of TTIP varies Tma=0.25M, Tmb=0.20M, Tmc=0.15M, Tmd=0.1M and **Tme=**0.05M. Thereactions proceeded as; 100mL methanol (24.44M) was taken in a conical flask and TTIP was added to it drop wise (20 drops per minute) while vigorous stirring, which was continued for additional 5 hours. White precipitates were obtained, which were washed with water and acetone several times and then air dried.In a reaction vessel 100mL aqueous Cd(NO₃)₂(0.085M) was taken and50mL methanol (24.44M) was added drop wise with continuous stirring. The reaction was then carried out in H₂S atmosphere for 1 minute with vigorous stirring, which was continued for 2 hours. The solution turned transparent to yellow. To this solution 3.53mL TTIP (0.1M) was added drop-wise (20 drops per minute). Stirring was continued to additional 5hours. The solution turned to light yellow in color. The synthesized TiO2 NP and CdS-TiO₂ NC were characterized by various techniques.

3. RESULTS AND DISCUSSION

The white colored fine powders were obtained as a result of reductive hydrolysis of TTIP suggesting the formation of TiO₂ nanoparticles. **Figure 4.2** shows the as-synthesized TiO₂ nanoparticles in suspension form, and **Figure 4.3** shows them in dried form. The synthesized TiO₂ having a mixture of anatase, brookite and rutile crystal structure was expected. For CdS-TiO₂ the color of the sample was yellow.

Fourier Transform Infrared Spectroscopy (FTIR) Spectroscopy:

The FTIR spectra confirmed the purity and composition of the samples as several peaks related to TiO2 were observed in all samples without any other ele mental impurity. The bands for Ti-O and Ti-O-Ti bonds were present in the 800-40 0cm⁻¹ region. The FTIR spectra of TiO₂ might be in the form of broad band centered a t 400-800cm⁻¹ attributed to the vibration of Ti-O bonds in the TiO₂ lattice or as peaks centered at 760cm⁻¹, 680cm⁻ 1, 600cm⁻¹, 560cm⁻¹, 500cm⁻¹, 468cm⁻¹, 41 0cm⁻¹, 385cm⁻¹ and 350cm⁻¹ assigned to the (Ti-O-Ti) stretching vibration. Figure 4.4 shows the FTIR spectra of the synthesized TiO2 nanoparticles and its nanocomposites with CdS (CdS-TiO2). In the present case the FTIR spectra of TiO2 NPs and CdS-TiO₂ NC was in the form of broad peak in the region 400-800cm⁻¹ with several small peaks in it. The b road peak appearing at 3100-3600cm⁻¹ was assigned to vibrations of hydroxyl groups of water adsorbed by the samples. The weak absorption band at 1620-1630c m⁻¹ was attributed to CO₂ adsorbed on the surface of the particles. As it is known that adsorption of water and CO2 are common for all powder samples exposed to atmosphere and are even more pronounced for nanosized particles with high surface area. In case of CdS-TiO2, the formation of CdS was confirmed by the appearance of peak at 405cm⁻¹ assigned for Cd-S bond, and the presence of broad band centered at 400-800cm⁻¹ with several small peaks in it confirms the presence of TiO₂ in the nanocomposite. Figure 4.5 contains the EDS spectra of the synthesized nanoparticles. The EDSspectra showed the presence of Ti and O peaks confirming the formation of pure TiO2 with no other elemental impurity for the samples Tma, Tmb, Tmc, Tmd and Tme. Other peaks in this figure corresponded to oxygen, carbon and silicate were due to sputter coating of glass substrate on the EDS stage and were not considered. The EDS spectra of CdS-TiO2 showed the presence of peak corresponded to Cd and S along with the peaks of Ti and O, thus confirming the formation of CdS-TiO2nanocomposite.

X-Ray Diffraction (XRD) Spectroscopy:

X-ray diffraction patterns for TiO2 NPs were of rather poor quality due to the physical nature of the samples. However, the XRD pattern (Figure 4.6) of the synthesized TiO2 NPs revealed the presence of mixtures of anatase, brookite and The **Figure 4.6**, shows the corresponded to anatase at 2 =25.56° (101), 37.8° (103), 48.07° (200), 54.18° (105), 62.42° (204) and 75.2° (215), rutile at 2 =27.01° (110), 36.14° (101), 42.121° (111), 54.89° (211) and 68.72° (301) andbrookite at 2 =30.9° (121) thus confirming the presence of mixed crystal phase. The estimated rystallite size for TiO2 samples (Tma, Tmb, Tmc, Tmd and Tme) based on the X-ray diffraction peak was not possible due to the presence of mixed peaks of anatase, rutile and brookite TiO2.

Figure 4.7 shows the XRD pattern of **CdS-TiO**₂nanocomposites, the pattern revealed the formation of cubic CdS and anatase TiO₂ nanoparticles. The presence of peaks corresponded only to anatase TiO₂ at 2 =25.56° (101), 37.282° (103), 48.07° (200), 54.18° (105), 62.42° (204), was related to the formation of anatase TiO₂

in **CdS-TiO**₂, while the formation of cubic CdS was confirmed by the presence ofpeaks corresponded only to cubic CdS at 2 =26.719° (111), 29.900° (200), 43.000° (220), 51.061° (311).

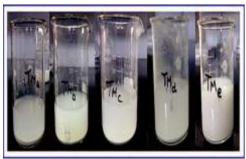
Scanning Electron Microscopy (SEM):

The SEM micrographs showed the formation of well-defined spherical mesoporous TiO₂ nanoclusters which were attributed to the high surface energy of nanosized TiO₂ particles. **Figure 4.8 (a-e)**, shows the SEM images of the synthesized TiO₂ NP above 7000 times magnification (7kx). **Figure 4.8 (f)** shows the SEM images of the synthesized CdS-TiO₂ NC at 9000 times magnification (9kx). X-ray diffraction peak was not possible due to the presence of mixed peaks of cubic CdS and anatase TiO₂.

Transmission Electron Microscopy (TEM):

The TEM micrograph (**Figure 4.9 (a-f)**) of TiO₂ NP (**Tma**, **Tmb**, **Tmc**, **Tmd**and**Tme**) showed the formation of spherical nanoclusters comprised of very small sized**TiO**₂NPs (1-2nm). The images showed a decrease in size of the nanocluster from>500nm (**Tma**) to <50nm (**Tme**). But the sizes of the individual TiO₂ nanoparticles were less than 2nm in all the cases. For **CdS-TiO**₂ the TEM image (**Figure 4.10**) confirmed the presence of both CdS and TiO₂ nanoparticles. This was in good agreement with the EDS and XRD results.

Thermal Gravimetric Analysis (TGA):


The synthesized TiO₂ NPs (**Tma**, **Tmb**, **Tmc**, **Tmd** and **Tme**) and **CdS-TiO**₂ NC were found to be thermally stable upto temperature as high as 1000°C with a small weight loss at around 100°C, which was probably due to the presence of moisture and other volatile solvents. **Figure 4.11** shows the TGA results of synthesized TiO₂ nanoparticles (**Tma**, **Tmb**, **Tmc**, **Tmd** and **Tme**) and **CdS-TiO**₂nanocomposite.

4. CONCLUSION

A series of Titanium Dioxide nanoparticles (**Tma**, **Tmb**, **Tmc**, **Tmd** and **Tme**) were successfully synthesized via single pot chemical precipitation method under ambient conditions. The synthesized TiO₂ NP clearly showed that as the concentration of the Ti precursor decreased the size of the TiO₂ nanocluster also decreased. The

size of the individual TiO₂ particle was not much affected. The synthesized NP showed good elemental purity without any contamination and good thermal stability. A mixed crystalline phase was observed in all TiO₂ samples. The micrographic studies revealed the formation of spherical clusters whose sizes decreased dramatically as the concentration of the Ti precursor decreased.

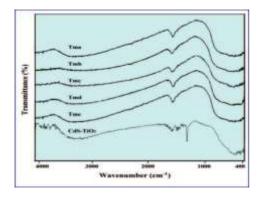

Figure 4.1 The synthesized TiO2nanoparticles (**Tma,Tmb,Tmc,Tmd**and**Tme**) obtained as such in suspension form.

Figure 4.2 The synthesized TiO2nanoparticles (**Tma,Tmb,Tmc,Tmd**and**Tme**) obtained after washing and drying.

Figure 4.3 The FTIR Spectra of the synthesized TiO2nanoparticles (**Tma,Tmb**, **Tmc,Tmd**and**Tme**) and its nanocomposites with CdS (**CdS-TiO**2).

Figure 4.4 EDS of the synthesized TiO2nanoparticles (**Tma,Tmb,Tmc,Tmd**and **Tme**) and its nanocomposites with CdS (**CdS-TiO**2).

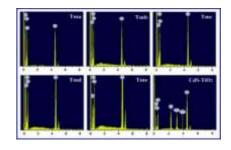
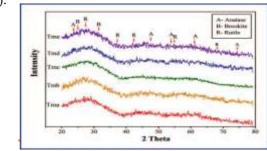
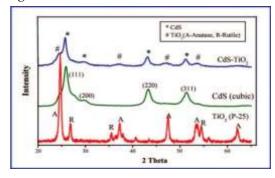
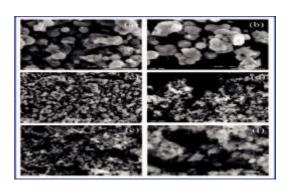
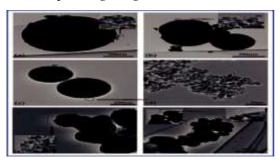



Figure 4.6 XRD spectra of synthesized TiO2nanoparticles (Tm a, Tm b, Tm c, Tm d and Tm e).

Figure 4.7 XRD spectra of **CdS-TiO**² nanocomposites in comparison to pure cubicCdS and Degussa P-25 TiO²


Figure 4.8 SEM images (a) Tm a, (b) Tm b, (c) Tm c, (d) Tm d, (e) Tm e and (f) CdS-TiO₂.

IJRA | Volume 3 | Issue 11

490

Figure 4.9 TEM images of (a)**Tma**, (b)**Tmb**, (c)**Tmc**, (d) magnified portion of **Tmc**, (e)**Tmd**, (f)**Tme**, and in the inset are the magnified portion of the corresponding images.

Figure 4.10 (a), shows two different sized nanoparticles, the smaller were TiO₂andthe larger CdS nanoparticles. **Figure 4.10 (b),** shows the representative diagram of **CdS-TiO**₂. The particle

sizes obtained by TEM are listed in Table 4.2.

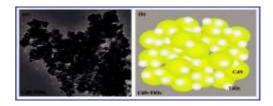
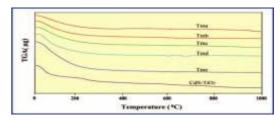



Figure 4.11 TGA results of synthesized TiO2nanoparticles (Tm a, Tm b, Tm c, Tm d and Tm e) and CdS-TiO2nanocomposite

Table 4.1 The explanation of the various peaks obtained by the FTIR spectra of the synthesized TiO₂ nanoparticles (**Tm a**, **Tm b**, **Tm c**, **Tm d** and **Tm e**) and **CdS-TiO**₂.

Peak	Region	Intensity	Significance	
A	400-420	Small and weak	Cd-S bond (CdS nanoparticles)	
В	400-800	broad band	Ti-O bond vibration (TiO ₂ nanoparticles)	
C	570-620	Small and weak	S-S bond (crystal S-S bond)	
D	1380-1420	Sharp or Broad	C-H bending of CH ₃ (Acetone)	
E	1620-1740	Small and weak	CO ₂ bending or C-H bending (Acetone)	
F	3140-3470	Broad	Intermolecular H-bonds (Lattice water)	

Table 4.2: Average particle sizes of the synthesized TiO₂NP (**Tm a, Tm b, Tm c, Tm d** and **Tm e**) and **CdS-TiO₂NC** obtained by TEM

Nanoparticles	Tma	Tmb	Tmc	Tmd	Tme	CdS-TiO ₂
Particle Size	1.5-2.0	1.5-1.6	1.2-1.5	1-1.2	0.8-1.0	5-6 (CdS),
(nm)						1.5-2 (TiO ₂)

IJRA | Volume 3 | Issue 11 Page | **491**

REFERENCES

- 1) Zhao, Y.; Zhang, X.; Zhai, J.; He, J.; Jiang, L.; Liu, Z.; Nishimoto, S.; Murakami, T.; Fujishima, A.; Zhu, D.: Enhanced Photocatalytic Activity of Hierarchically Micro-/Nano-Porous TiO₂ Films. *Applied Catalysis B: Environmental* 2008, 83, 24-29.
- 2) Richards, R.: Surface and Nanomolecular Catalysis; CRC/Taylor & Francis Boca Raton, FL, U.S.A., 2006.
- 3) Hashimoto, K.; Irie, H.; Fujishima, A.: TiO2Photocatalysis: A Historical Overview and Future Prospects. *Japanese Journal of Applied Physics*2005, 44, 8269-8285.
- 4) Fujishima, A.; Honda, K.: Photolysis-Decomposition of Water at the Surface of an Irradiated Semiconductor. *Nature*1972, 238, 37-38.
- 5) Linsebigler, A. L.; Lu, G.; Jr, J. T. Y.: Photocatalysis on TiO₂ Surfaces: Principles, Mechanisms, and Selected Results. *Chemical Reviews*1995, 95, 735-758
- 6) Girginer, B.; Galli, G.; Chiellini, E.; Bicak, N.: Preparation of Stable CdS Nanoparticles in Aqueous Medium and their Hydrogen Generation Efficiencies in Photolysis of Water. *International Journal of Hydrogen Energy* 2009, 34, 1176-1184.
- 7) Zhang, Y. J.; Yan, W.; Wu, Y. P.; Wang, Z. H.: Synthesis of TiO₂ Nanotubes Coupled with CdS Nanoparticles and Production of Hydrogen by Photocatalytic Water Decomposition. *Materials Letters* 2008, *62*, 3846-3848.
- 8) Pichot, F.; Pitts, J. R.; Gregg, B. A.: Low-Temperature Sintering of TiO₂ Colloids: Application to Flexible Dye-Sensitized Solar Cells. *Langmuir*2000, 16, 5626-5630.
- 9) Benedix, R.; Dehn, F.; Quaas, J.; Orgass, M.: Application of Titanium Dioxide Photocatalysis to Create Self-Cleaning Building Materials. *Lacer*2000, *5*, 157-168.
- 10) Li, Y.; Li, X.; Li, J.; Yin, J.: Photocatalytic Degradation of Methyl Orange by TiO₂ Coated Activated Carbon and Kinetic Study. *Water Research* 2006, 40, 1119-1126.
- 11) Wongkalasin, P.; Chavadej, S.; Sreethawong, T.: Photocatalytic Degradation of Mixed Azo Dyes in Aqueous Wastewater Using Mesoporous-Assembled TiO₂ Nanocrystal Synthesized by a Modified Sol–Gel Process. Colloids and SurfacesA: Physicochemical and Engineering Aspects 2011, 384, 519-528.

- 12) Maurya, A.; Chauhan, P.: Structural and Optical Characterization of CdS/TiO₂Nanocomposite. Semiconductors, *Materials Characterization*2011, 62, 382-390.
- 13) Ohno, K.; Tanaka, M.; Takeda, J.; Kawazoe, Y.: Advances in MaterialsResearch, Nano- and Micromaterials; Springer Berlin Heidelberg New York, 2008; Vol. 9.
- 14) Zhang, Y.; Deng, L.; Zhang, G.; Gan, H.: Facile Synthesis and Photocatalytic Property of Bicrystalline TiO₂/Rectorite Composites. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 2011, 384, 137-144.
- 15) Paola, A. D.; Cufalo, G.; Addamo, M.; Bellardita, M.; Campostrini, R.; Ischia, M.; Ceccato, R.; Palmisano, L.: Photocatalytic Activity of Nanocrystalline TiO₂ Powders Prepared by Thermohydrolysis of TiCl₄ in Aqueous Chloride Solutions. *Colloids and Surfaces A: Physicochemical Engineering Aspects* 2008, 317, 366-376.
- 16) Al-Rasheed, R. A.: Water Treatment by Heterogeneous Photocatalysisan Overview. In 4th SWCC Acquired Experience Symposium, Jeddah. 2005.
- 17) Hanaor, D. A. H.; Sorrell, C. C.: Review of the Anatase to Rutile Phase Transformation. *Journal of Materials Science* 2011, 46, 855-874.
- 18) Shannon, R. D.; Pask, J. A.: Kinetics of the Anatase Rutile Transformation. *Journal of the American Ceramic Society* 1965, 48, 391-398.
- 19) Monticone, S.; Tufeu, R.; Kanaev, A. V.; Scolan, E.; Sanchez, C.: Quantum Size Effect in TiO₂ Nanoparticles: Does it exist? *Applied Surface Science*2000, *162*, 565-570.
- 20) Satoh, N.; Nakashima, T.; Kamikura, K.; Yamamoto, K.: Quantum Size Effect in TiO₂ Nanoparticles Prepared by Finely Controlled Metal Assembly on DendrimerTtemplates. *Nature Nanotechnology* 2008, 3, 106-111.
- 21) Serpone, N.; Lawless, D.; Khairutdinov, R.: Size Effects on the PhotophysicalProperties of Colloidal Anatase TiO₂ Particles: Size Quantization versus Direct Transitions in this Indirect Semiconductor? *The Journal of Physical Chemistry*1995, 99, 16646-16654.
- 22) Beranek, R.; Kisch, H.: Tuning the Optical and Photoelectrochemical Properties of Surface-Modified TiO₂. *Photochemical &Photobiological Sciences* 2008, 7, 40-48.

492

IJRA | Volume 3 | Issue 11

July – Sep © 2016, IJRA Transactions

- 23) Michael, A. H.: A Surface Science Perspective on TiO₂Photocatalysis. *SurfaceScience Reports* 2011, 66, 185–297.
- 24) Roy, P.; Berger, S.; Schmuki, P. TiO₂ Nanotubes: Synthesis and Applications. *AngewandteChemie International Edition* 2011, *50*, 2904-2939.
- 25) Beeldens, A.: An Environmental Friendly Solution for Air Purification and Self-Cleaning Effect: The Application of TiO₂ As Photocatalyst in Concrete. In *Proceedings of Transport Research Arena Europe–TRA*, Göteborg, Sweden, 2006.
- 26) Ramakrishnan, R.; Sudha, J. D.; Reena, V. L.: Nanostructured Polyaniline-Polytitanate-Clay Composite for Photocatalytic Applications: Preparation and Properties. RSC Advances2012, 2, 6228-6236.

- 27) Patel, A.; Prajapati, P.; Boghra, R.: Overview on Application of Nanoparticles in Cosmetics. *Asian Journal of Pharmaceutical Sciences and Clinical Research* 2011, 1, 40-45.
- 28) Reijnders, L.: Hazard Reduction for the Application of Titania Nanoparticles in Environmental Technology. *Journal of Hazardous Materials* 2008, 152, 440-445.
- 29) Dürr, M.; Schmid, A.; Obermaier, M.; Rosselli, S.; Yasuda, A.; Nelles, G.: Low-Temperature Fabrication of Dye-Sensitized Solar Cells by Transfer of Composite Porous Layers. *Nature Materials* 2005, *4*, 607-611.
- 30) Wang, G.; Wang, Q.; Lu, W.; Li, J.: Photoelectrochemical Study on Charge Transfer Properties of TiO₂-B Nanowires with an Application as Humidity Sensors. *The Journal of Physical Chemistry B*2006, 110, 22029-22034.

IJRA | Volume 3 | Issue 11 P a g e | **493**