

International Journal of Research and Applications

ISSN (online): 2349-0020 ISSN (print): 2394-4544 http://www.ijraonline.com/

Research Article

Synthesis and structural evaluation of some novel tetra hydro pyrimidines from Mannich condensation of three components

Jagadeesh Kumar Ega1 and Kavitha Siddoju 1*

Corresponding Author:

jkjagadeeshkumare@gmail.com

DOI:

http://dx.doi.org/ 10.17812/IJRA.4.15(97)2017

Manuscript:

Received: 8th Aug, 2017 Accepted: 17th Sep, 2017 Published: 20th Sep, 2017

Publisher:

Global Science Publishing Group, USA http://www.globalsciencepg.org/

ABSTRACT

In this paper we discuss about the synthesis of three new series of N-(2-chloro-4-(trifluoromethyl) phenyl)-4-

(sub-phenyl)-1, 2, 3, 4-tetrahydro-6-methyl-2-oxopyrimidine-5carboxamide (PY-1 to 12) are synthesized. The synthesis of (PY-1 to 12) was achieved by an acid catalyzed cyclocondensation of N-(2chloro-4-(trifluoromethyl) phenyl)-oxobutanamide, substituted urea/thiourea and Benzaldehydes. The desired substituted compounds are show potent biological activity. The compounds were characterized by IR, NMR, Mass and elemental analysis. This includes the condensation of substituted Benzaldehyde (2) with either urea or thiourea or N-methyl urea (3 or 3a) to form hemiaminal with some similarities to the Mannich condensation. Hemiaminal undergoes dehydration in presence of acid catalyst to produce iminium cation as an intermediate. The examine (iminium generated acts as an electrophile for the nucleophilic addition of keto enroll of N-(2-chloro-4-(trifluoromethyl)phenyl)-3oxobutanamide(1) with removal of proton to produce an intermediate, undergoes intramolecular condensation in presence of acid between oxygen of ketone and amino group of urea or thiourea or N-methyl urea to give the cyclized targeted product(4) (PY-1 to 12) (Scheme-1&2) (Table-1).

Keywords: Pyrimidine, urea, thiourea and benzaldehyde.

IJRA - Year of 2017 Transactions:

Month: July - September

Volume – 4, Issue – 15, Page No's: 581-584

Subject Stream: Chemistry

Paper Communication: Author Direct **Paper Reference Id:** IJRA-2017: 4(15)581-584

^{1*} Department of Chemistry, Chaitanya (AUTONAMOUS) Post graduate College, Warangal, T.S-506001.

¹ Department of Chemistry, Kakatiya University, Warangal, Telangana State-506009.

eISSN: 2349 – 0020 pISSN: 2394 – 4544

www.ijraonline.com

CHEMISTRY

RESEARCH ARTICLE

Synthesis and structural evaluation of some novel tetra hydro pyrimidines from Mannich condensation of three components

Jagadeesh Kumar Ega 1, Kavitha Siddoju 1*

^{1*} Department of Chemistry, Chaitanya (AUTONAMOUS) Post graduate College, Hanamkonda, Warangal, Telangana State 506001.

¹ Department of Chemistry, Kakatiya University, Warangal, Telangana State 506009.

ABSTRACT

In this paper we discuss about the synthesis of three new series of N-(2-chloro-4-(trifluoromethyl) phenyl)-4-(sub-phenyl)-1, 2, 3, 4-tetrahydro-6-methyl-2-oxopyrimidine-5-carboxamide (**PY-1 to 12**) are synthesized. The synthesis of (**PY-1 to 12**) was achieved by an acid catalyzed cyclocondensation of N-(2-chloro-4-(trifluoromethyl) phenyl)-oxobutanamide, substituted urea/thiourea and Benzaldehydes. The desired substituted compounds are show potent biological activity. The compounds were characterized by IR, NMR, Mass and elemental analysis.

This includes the condensation of substituted Benzaldehyde (2) with either urea or thiourea or N-methyl urea (3 or 3a) to form hemiaminal with some similarities to the Mannich condensation. Hemiaminal undergoes dehydration in presence of acid catalyst to produce iminium cation as an intermediate. The examine (iminium cation) generated acts as an electrophile for the nucleophilic addition of keto enroll of N-(2-chloro-4-(trifluoromethyl)phenyl)-3-oxobutanamide(1) with removal of proton to produce an intermediate, undergoes intramolecular condensation in presence of acid between oxygen of ketone and amino group of urea or thiourea or N-methyl urea to give the cyclized targeted product(4) (PY-1 to 12) (Scheme-1&2) (Table-1).

Keywords: Pyrimidine, urea, thiourea and benzaldehyde.

1. INTRODUCTION

Pyrimidine is a six membered heterocyclic compound consisting of two nitrogen atoms at one and three positions of heterocyclic ring. Generally derivatives pyrimidine such 2-hydroxysubstitutedpyrimidine, 2-mercaptopyrimidine and 2-amino-substituted pyrimidine are studied. Pyrimidines have been isolated from the nucleic acid hydrolysates. Pyrimidines are among those molecules that make life possible, have been some of the building blocks of DNA and RNA. Several analogues of pyrimidines have been used as compounds that interfere with the synthesis and functioning of nucleic acids e.g. fluorouracil, which has been used in cancer treatment. Also there are some thiouracil derivatives, which produce adverse reduction in susceptible patients and found more potent and less likely to produce side effects and is being widely used.

There are several other important groups of pyrimidines with medicinal uses. Pyrimidine ring carrying various substituents may be built up from two or three aliphatic fragments by the principle synthesis or by a variety of other syntheses, which are complimentary rather than alternative to it.

alternative method An of synthesis the summarization or break down heterocyclic such as hydration of purine, but such methods are rarely used. From last ten decades pyrimidine and its derivative were studied because of their biological activity. The 1, 2, 3, 4tetrahydropyrimidines have many pharmacological and medicinal application viz: antimicrobial and radio protective.

Table-1Physical Data of compounds (PY-1 to 12).

Code	R1	M.F.	M.W.	M.P.0C	Yield %	Rf1	Rf2
PY-1	2-OCH3	C20H17ClF3N3O3	440	207	68	0.48	0.65
PY-2	2-F	C19H14ClF4N3O2	428	202	59	0.49	0.58
PY-3	4-Cl	C19H14Cl2F3N3O2	445	224	71	0.41	0.68
PY-4	4-CH3	C ₂₀ H ₁₇ ClF ₃ N ₃ O ₂	424	201	69	0.59	0.68
PY-5	4-F	C19H14ClF4N3O2	428	195	55	0.55	0.71
PY-6	4-Cl	C ₁₉ H ₁₄ Cl ₂ F ₃ N ₃ OS	460	220	71	0.48	0.58
PY-7	3-Cl	C ₂₀ H ₁₆ Cl ₂ F ₃ N ₃ O ₂	458	222	63	0.51	0.61
PY-8	2-F	C ₂₀ H ₁₆ ClF ₄ N ₃ O ₂	442	215	59	0.52	0.70
PY-9	4-OCH3	C21H19ClF3N3O3	454	228	75	0.47	0.75
PY-10	4-Cl	C ₂₀ H ₁₆ Cl ₂ F ₃ N ₃ O ₂	458	197	71	0.56	0.65
PY-11	3,4-DiCl	C ₂₀ H ₁₅ Cl ₃ F ₃ N ₃ O ₂	493	232	71	0.52	.067
PY-12	4-Br	C ₂₀ H ₁₆ BrClF ₃ N ₃ O ₂	503	195	67	0.50	0.68

TLC Solvent system Rf1:- Hexane: Ethyl acetate -: 4, Rf2:-Chloroform: methanol -9; 1.

2. MATERIALS AND METHOD

General procedure for the synthesis N-(2-chloro-4-(trifluoromethyl) phenyl)-4- (sub- phenyl)-1, 2, 3, 4-tetrahydro-6-methyl-2-oxopyrimidine-5-carboxamide (PY-1 to PY-12).

N-(2-chloro-4-(trifluoromethyl)phenyl)-3-oxobutanamide , Benzaldehydes , urea derivatives

(0.015M) aPY small quantity of HCl in ethyl alcohol (25ml) were heat to 80-85°C for 10 to 12 hrs. After that cool the reaction mixture to 25-35°C for 20 hrs. Crude product was dissolves in ethyl alcohol and reprecipited to give desire compounds.

3. RESULTS AND DISCUSSIONS

Products were monitored by TLC analysis of (PY-1 to PY-12) all the compounds melting point were

Page | 582

IJRA | Volume 4 | Issue 15

checked. IR, NMR and elemental analysis were done and reported.

N-(2-chloro-4-(trifluoromethyl) phenyl)-4-(2-methoxyphenyl)-1, 2, 3, tetrahydro-6-methyl-2-oxopyrimidine-5-carboxamide (PY-1)

Yield:68%; Melting point 207°C; Molecular formula :C20H17ClF3N3O3 Carbon: 54.62; Hydrogen: 3.90; Chlorine: 8.06; Fluorine: 12.96; Nitrogen: 9.55; Oxygen: 10.91 Obtained Carbon: 54.42; Hydrogen: 3.81; Chlorine: 8.00; Fluorine, 12.90; Nitrogen, 9.55; Oxygen, 10.91%; IR spectra: 3410 (For -NH), 3070 (For -C-H, of Phenyl ring), 1660 (C=O, amide carbonyl stretching), 1600 (N-H, pyrimidine ring), 1525 (C=C, Phenyl ring stretching), 1344 (For -C-N-C of pyrimidine),1247 (C-O-C, asymmetrical stretching of OCH3), 44 (C-F stretching); Mass: 440; 1H NMR (Solvent: DMSO-d6) Sppm: 2.28 (s, 3(H), Hi), 3.72 (s, 3(H), Hii), 5.15 (s, 1(H), Hiii), 6.87 (s, 1(H), Hiv,), 6.97- 7.14 (m, 2(H), Hv), 7.28-7.30 (d, 2(H), Hvi',), 7.48-7.50 (d , 2(H), Hviii'), 8.37 (s, 1(H), Hviii), 8.44-8.47 (m, 1(H), Hix,), 8.90 (s, 1H, Hl).

N-[(2-chloro-4-(trifluoro methyl) phenyl)-4-(2-fluorophenyl)]-1, 2, 3, 4- tetrahydro-6-methyl-2-oxopyrimidine-5-carboxamide (PY-2)

Yield: 59%; Melting point: 202°C Molecular formula: C19H14ClF4N3O2; Carbon: 53.35; Hydrogen: 3.30; Chlorine: 8.29; Fluorine: 17.76; Nitrogen: 9.82; Oxygen, 7.48; Results: Carbon: 53.21; Hydrogen: 3.10; Chlorine: 8.08; Fluorine: 17.12; Nitrogen: 9.71; Oxygen: 7.40%; MS: *m/z* 428.

N-[(2-chloro-4-(trifluoro methyl) phenyl)-4-(4-chlorophenyl)]-1, 2, 3, 4- tetrahydro-6-methyl-2-oxopyrimidine-5-carboxamide (PY-3)

Practical yield: 71%; Melting point 224°C; Molecular formula: C19H14Cl2F3N3O2; Carbon: 51.37; Hydrogen: 3.18; Chlorine: 15.96; Fluorine: 12.83; Nitrogen: 9.46;

Oxygen: 7.20; Results: Carbon: 51.20; Hydrogen: 3.03; Chlorine: 15.56; Fluorine: 12.66; Nitrogen: 9.22; Oxygen: 7.10%; MS: *m*/*z* 445;

N-[(2-chloro-4-(trifluoro methyl) phenyl)-4-(4-methylphenyl)]-1, 2, 3, 4- tetrahydro-6-methyl-2-oxopyrimidine-5-carboxamide (PY-4)

Yield: 69%; Melting point 201°C; Molecular formula: C20H17ClF3N3O2; Carbon: 56.68; Hydrogen: 4.04; Chlorine: 8.37; Fluorine: 13.45; Nitrogen: 9.91; Oxygen: 7.55; Results: Carbon: 56.24; Hydrogen: 4.00; Chlorine: 8.22; Fluorine: 13.24; Nitrogen: 8.5; Oxygen: 7.35%; MS: *m*/*z* 424.

N-[(2-chloro-4-(trifluoro methyl) phenyl)-4-(4-fluorophenyl)]-1, 2, 3, 4- tetrahydro-6-methyl-2-oxopyrimidine-5-carboxamide (PY-5)

Yield: 55%; Melting point 195°C; Molecular formula C19H14ClF4N3O2; Carbon: 53.35; Hydrogen: 3.30; Chlorine: 8.29; Fluorine: 17.76; Nitrogen: 9.82; Oxygen: 7.48; Results: Carbon: 53.09; Hydrogen: 3.12; Chlorine: 8.11; Fluorine: 17.23; Nitrogen: 9.45; Oxygen: 7.24%; MS: *m*/*z* 428.

4-(4-chlorophenyl)-N-[2-chloro-4-(trifluoro methyl) phenyl]-6-methyl-2- thioxo-1, 2, 3, 4-tetrahydro pyrimidine-5-carboxamide (PY-6)

Yield: 71%; Melting point 220°C; Molecular formula C19H14Cl2F3N3OS: Carbon: 49.53; Hydrogen: 3.04; Chlorine: 15.40; Fluorine: 12.38; Nitrogen: 9.12; Oxygen: 3.48; Sulphur: 6.97; Results: Carbon: 49.57; Hydrogen: 3.08; Chlorine: 15.23; Fluorine: 12.24; Nitrogen: 9.17; Oxygen: 3.23; Sulphur: 6.81%; IR cm-1: 3363 (For -NH), 3109 (For -C-H, of Phenyl ring), 2955 (C-H, CH3 stretching), 2871 (C-H, CH3 group stretching), 1666 (C=O, amide carbonyl stretching), 1597 (N-H pyrimidine ring), 1523 (C=C Phenyl ring stretching), 1423 (C-H, CH3 group asymmetrical deformation), 1342 (C-H, CH3 group symmetrical (C-N-C deformation), 70 pyrimidine stretching), 1269/1246 (C-N, stretching), 14 (C-F stretching), 677 (C-Cl starching) Mass: 460; Proton NMR (Solvent: Dimethyl sulfoxide-d6) ppm: 2.02 (s, 3(H),Ha), 5.43 (s, 1(H),Hb), 6.95-6.98 (d, 1(H),Hc,), 7.10 (s, 1(H),Hd),7.27-7.29 (d, 2(H),Hef,), 7.51-7.53 (m, 1(H),Hg), 7.66 (s, 1(H),Hh), 8.19-8.22 (m, 1(H), Hi,), 8.81 (s,1(H),Hj), 8.84 (s,1(H),Hk), 9.70 (s, 1(H),H1).

4-(3-chlorophenyl)-N-[2-chloro-4-(trifluoro methyl) phenyl]-3, 6-dimethyl-2- oxo-1, 2, 3, 4-tetrahydro pyrimidine-5-carboxamide (PY-7)

Yield: 63%; Melting point 222°C; Molecular formula C20H16Cl2F3N3O2: Carbon: 52.42; Hydrogen: 3.52; chlorine: 15.47; Fluorine: 12.44; Nitrogen: 9.17; Oxygen: 6.98; Results: Carbon: 52.02; Hydrogen: 3.46; Chlorine: 15.23; Fluorine: 12.13; Nitrogen: 9.08; Oxygen: 6.43%; MS: *m/z* 458. IR: 3260, 3130 (For -NH), 2960 (For -C-H, of Phenyl ring), 1695 (For C=O, carbonyl), 48 (For -C-F).

N-[2-chloro-4-(trifluoro methyl) phenyl]-4-(2-fluorophenyl)-3,6-dimethyl-2- oxo-1,2,3,4-tetrahydro pyrimidine-5-carboxamide (PY-8)

Yield: 59%; Melting point 215°C; Molecular formula C20H16ClF4N3O2: Carbon: 54.37; Hydrogen: 3.65; Chlorine: 8.02; Fluorine: 17.20; Nitrogen: 9.51; Oxygen: 7.24; Results: Carbon: 54.30; Hydrogen: 3.52; Chlorine: 7.89; Fluorine: 17.10; Nitrogen: 9.42; Oxygen: 7.14%; MS: *m/z* 442. IR: 3255, 3120 (For -NH), 2958 (For -C-H of phenyl ring), 1691 (For C=O, carbonyl), 48 (For C-F).

N-[2-chloro-4-(trifluoro methyl) phenyl]-4-(4-methoxyphenyl)-3, 6-dimethyl- 2-oxo-1, 2, 3, 4-tetrahydro pyrimidine-5-carboxamide (PY-9)

Yield: 75%; Melting point 228°C; Molecular formula C21H19ClF3N3O3; Carbon: 55.58; Hydrogen: 4.22; Chlorine: 7.81; Fluorine: 12.56; Nitrogen: 9.26; Oxygen: 10.58; Results: Carbon: 55.40; Hydrogen: 4.32; Chlorine: 7.75; Fluorine: 12.24; Nitrogen: 9.32; Oxygen: 10.42%; MS: *m/z* 454. IR: 3263, 37 (For -NH), 2962 (For -C-H, of Phenyl ring), 1692 (For C=O, carbonyl), 48 (For -C-F).

4-(4-chlorophenyl)-N-[2-chloro-4-(trifluoro methyl) phenyl]-3,6-dimethyl-2- oxo-1,2,3,4-tetrahydro pyrimidine-5-carboxamide (PY-10)

Yield:71%; Melting point 197°C; Molecular formula C20H16Cl2F3N3O2: Carbon: 52.42; Hydrogen: 3.52; Chlorine: 15.47; Fluorine: 12.44; Nitrogen: 9.17; Oxygen: 6.98; Results: Carbon: 52.40; Hydrogen: 3.42; Chlorine: 15.25; Fluorine: 12.21; Nitrogen 9.12; Oxygen: 6.23%; IR: 3315 (For-NH), 3070 (For-C-H, of Phenyl ring), 2923 (C- H, CH3 stretching), 2868 (C-H CH3 group stretching), 1680 amide stretching), 1600 (N-H, (C=O)pyrimidine ring), 1529 (C=C, Phenyl ring stretching), 1491 (C-H, CH3 group asymmetrical deformation), 114 (C-H, CH3 group symmetrical deformation), 1344 (C-N-C, pyrimidine ring stretching), 1267 (C-N, stretching), 32 (C-F stretching), 653 (C-Cl starching); Mass: 458; 1H NMR (Solvent: Dimethyl sulfoxide-d6) δppm: 2.19 (s,3(H),Ha), 3.09 (s, 3(H),Hb), 5.33-5.32 (s, 1(H),Hc), 7.08-7.10 (d, 1(H),Hd,), 7.23-7.26 (d, 7.32-7.39(m, 3(H),Hf-h,), 1(H),He), 7.88-7.90 (m,1(H),Hi), 8.43-8.46 (m, 1(H),Hj), 8.88-8.89 (d, 1(H),Hk,), 10.07 (s, 1(H), Hl).

N-[2-chloro-4-(trifluoro methyl) phenyl]-4-(3, 4-dichlorophenyl)-3, 6- dimethyl-2-oxo-1, 2, 3, 4-tetrahydro pyrimidine-5-carboxamide (PY-11)

Yield: 71%; Melting point 232°C; Molecular formula C20H15Cl3F3N3O2: Carbon: 48.75; Hydrogen: 3.07; Chlorine: 21.59; Fluorine: 11.57; Nitrogen: 8.53; O: 6.49; Results: Carbon: 48.70; Hydrogen: 3.10; Chlorine: 21.29; Fluorine: 11.34; Nitrogen 8.52;

Oxygen: 6.31%; MS: *m*/*z* 493. IR: 3254, 3134 (For - NH), 2954 (For -C-H, of Phenyl ring), 1684 (For -C=O, carbonyl), 44 (For -C-F).

4-(4-bromophenyl)-N-[2-chloro-4-(trifluoro methyl) phenyl]-3, 6-dimethyl-2- oxo-1, 2, 3, 4-tetrahydro pyrimidine-5-carboxamide (PY-12)

Yield: 67%; Melting point 195°C; Molecular formula C20H16BrClF3N3O2: Carbon: 47.78; Hydrogen: 3.21; Bromine: 15.89; Chlorine: 7.05; Fluorine: 11.34; Nitrogen: 8.36; Oxygen: 6.37; Results: Carbon: 47.60; Hydrogen: 3.22; Bromine: 15.74; Chlorine: 7.00; Fluorine: 11.25; Nitrogen: 8.33; Oxygen: 6.22%; MS: *m/z* 503. IR: 3247, 39 (For -NH), 2957 (For -C-H, of Phenyl ring), 1692 (For -C=O, carbonyl), 40(For - C-F).

4. CONCLUSION

A variety of biomedical advantage and with a vision to more determine the pharmacological report of bi/tricyclic aromatic heterocycles linked to pyrimidines, three different heterocyclic scaffolds related to pyrimidines (1,2,3,4-tetrahydropyrimidines have been synthesized in the work.

REFERENCES

- 1) Finn, M. G.; Sharpless, K. B. Angew. (2001), Chem. Int. Ed., **40**, 2004.
- 2) Horton, D. A.; Smythe, M. L., (2003), Chem. Rev. **2**, 893.
- 3) Devprakash, AB Udaykumar, (2011), J. Pharm. Res., **4(7)**, 2436-2440.
- 4) S.D. Chamberlain, K.GudmuPYsson; (2002) Chem. Abstr. **137**, 33316h.
- 5) L.R. Patil, P.N. MaPYhare, R.A. Mane; (2003). IPY. J.Het. Chem., **12(3)**, 245-248.
- 6) H. Mitsuya aPY S. Broder, (1987) Nature (LoPYon), **325**, 773.
- 7) Nada M. Nadia G. KaPYile & Omar A.Miqdad. (2008), Molecules. **13**, 1501.
- 8) J. B. Press aPY R.K. Rushell; U.S. Pat. , 4, 670, 560, Chem. Abstr. , 4.
- 9) R. K. Rushell, J.J. Manchally, R. Falotiko; J. Med. Chem., **31**, 1786.
- 10) Okada, Hirochi; Chem. Pharm. Bull , **47**(3), 430, (Eng); Chem. Abstr., **130**.